首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epigenetic gene silencing, and associated promoter CpG island DNA hypermethylation, is an alternative mechanism to mutations by which tumor suppressor genes may be inactivated within a cancer cell 1-4,5-7. These epigenetic changes are prevalent in all types of cancer, and their appearance may precede genetic changes in pre-malignant cells and foster the accumulation of additional genetic and epigenetic hits8. These epigenetically modified genes constitute important categories of tumor suppressor genes including cell cycle regulators, pro-differentiation factors, and anti-apoptotic genes3, and many of these genes are known to play a role in normal development 9-11. While the silencing of these genes may play an essential role in tumor initiation or progression, the mechanisms underlying the specific targeting of these genes for DNA hypermethylation remains to be determined. The large numbers of epigenetically silenced genes that may be present in any given tumor, and the clustering of silenced genes within single cell pathways12, begs the question of whether gene silencing is a series of random events resulting in an enhanced survival of a pre-malignant clone, or whether silencing is the result of a directed, instructive program for silencing initiation reflective of the cells of origin for tumors. In this regard, the current review stresses the latter hypothesis and the important possibility that the program is linked, at least for silencing of some cancer genes, to the epigenetic control of stem/precursor cell gene expression patterns.  相似文献   

3.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

4.
5.
6.
The genetics of B-cell chronic lymphocytic leukemia (B-CLL) differ considerably from most other forms of hematologic malignancy which are usually characterized by chromosome translocations. B-CLL typically contains chromosomal deletions and chromosomes 13q14 and 11q22-->q23 are the most common. These two regions appear to share a common ancestral origin (Auer et al., 2007b). Overall, chromosomal abnormalities can be found in the majority of patients with B-CLL when using sensitive techniques (Dohneret al., 2000) and possibly reflects an underlying predisposition, with a small but significant number of familial cases. Although single and consistent abnormalities are most common, multiple rearrangements can occur, often with disease progression (Feganetal., 1995; Dohner et al., 2000). Regions of recurrent deletion suggest the presence of tumor suppressor genes if following Knudson's theoretical 2-hit model. However, despite extensive sequencing analysis over the last decade and lack of pathogenic mutations identified, there has been a move away from this suggested hypothesis and alternative mechanisms of gene inactivation involving epigenetic silencing or haploinsufficiency may be considered as more likely in this disease. This review focuses on the common genetic abnormalities in B-CLL and relates them to some of the more recent hypotheses on inactivation of genes within these regions of deletion.  相似文献   

7.
8.
Prostate cancer is one of the most common malignancies.The development and progression of prostate cancer are driven by a series of genetic and epigenetic events including gene amplification that activates oncogenes and chromosomal deletion that inactivates tumor suppressor genes.Whereas gene amplification occurs in human prostate cancer,gene deletion is more common,and a large number of chromosomal regions have been identified to have frequent deletion in prostate cancer,suggesting that tumor suppressor inactivation is more common than oncogene activation in prostatic carcinogenesis (Knuutila et al.,1998,1999;Dong,2001).Among the most frequently deleted chromosomal regions in prostate cancer,target genes such as NKX3-1 from 8p21,PTENfrom 10q23 andATBF1 from 16q22 have been identified by different approaches (He et al.,1997;Li et al.,1997;Sun et al.,2005),and deletion of these genes in mouse prostates has been demonstrated to induce and/or promote prostatic carcinogenesis.For example,knockout of Nkx3-1 in mice induces hyperplasia and dysplasia (Bhatia-Gaur et al.,1999;Abdulkadir et al.,2002) and promotes prostatic tumorigenesis (Abate-Shen et al.,2003),while knockout of Pten alone causes prostatic neoplasia (Wang et al.,2003).Therefore,gene deletion plays a causal role in prostatic carcinogenesis (Dong,2001).  相似文献   

9.
10.
Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.  相似文献   

11.
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation. Supported by National Basic Research Program of China (Grant No. 2006CD910402) and Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ22201 and 08JC1416400).  相似文献   

12.
According to the concept of immune surveillance, the appearance of a tumor indicates that it has earlier evaded host defenses and subsequently must have escaped immunity to evolve into a full-blown cancer. Tumor escape mechanisms have focused mainly on mutations of immune and apoptotic pathway genes. However, data obtained over the past few years suggest that epigenetic silencing in cancer may be as frequent a cause of gene inactivation as are mutations. Here, we discuss the evidence that tumor immune evasion is mediated by non-mutational epigenetic events involving chromatin and that epigenetics collaborates with mutations in determining tumor progression. Since epigenetic changes are potentially reversible, the relative contribution of mutations and epigenetics, to the gene defects in any given tumor, may be a factor in determining the efficacy of treatments. We review new developments in basic chromatin mechanisms and in this context describe the rationale for the current use of epigenetic agents in cancer therapy and for a novel epigenetically generated tumor vaccine model. We emphasize that epigenetic cancer treatments are currently a ‘blunt-sword’ and suggest future directions for designing chromatin-based programs of potential value in the diagnosis and treatment of cancer.  相似文献   

13.
14.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.  相似文献   

15.
Loss of heterozygosity of a segment at 3p21.3 is frequently observed in lung cancer and several other carcinomas. We have identified the Ras-association domain family 1A gene (RASSF1A), which is localized at 3p21.3 in a minimum deletion sequence. De novo methylation of the RASSF1A promoter is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A expression. Hypermethylation of RASSF1A was frequently found in most major types of human tumors including lung, breast, prostate, pancreas, kidney, liver, cervical, thyroid and many other cancers. The detection of RASSF1A methylation in body fluids such as serum, urine, and sputum promises to be a useful marker for early cancer detection. The functional analysis of RASSF1A reveals a potential involvement of this protein in apoptotic signaling, microtubule stabilization, and cell cycle progression.  相似文献   

16.
17.
18.
19.
20.

Background

The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation.

Methods and Findings

Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome.

Conclusions

Using an unbiased genome-wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号