首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the mandibles of 377 individuals representing 25 species, 12 genera, 5 tribes, and 2 subfamilies of the Loricariidae, a species‐rich radiation of detritivorous–herbivorous neotropical freshwater fishes distinguished by having a ventral oral disk and jaws specialized for surface attachment and benthic feeding. Loricariid mandibles are transversely oriented and bilaterally independent, each rotating predominantly around its long axis, although rotational axes likely vary with mandibular geometry. On each mandible, we measured three traditional and three novel morphological parameters chosen primarily for their functional relevance. Five parameters were linear distances and three of these were analogous to traditional teleost in‐ and out‐levers for mandibular adduction. The sixth parameter was insertion area of the combined adductor mandibulae muscle (AMarea), which correlated with adductor mandibulae volume across a subset of taxa and is interpreted as being proportional to maximum force deliverable to the mandible. Multivariate analysis revealed distributions of phylogenetically diagnosed taxonomic groupings in mandibular morphospace that are consistent with an evolutionary pattern of basal niche conservatism giving rise to multiple adaptive radiations within nested clades. Correspondence between mandibular geometry and function was explored using a 3D model of spatial relationships among measured parameters, potential forces, and axes of rotation. By combining the model with known loricariid jaw kinematics, we developed explicit hypotheses for how individual parameters might relate to each other during kinesis. We hypothesize that the ratio [AMarea/tooth row length2] predicts interspecific variation in the magnitude of force entering the mandible per unit of substrate contacted during feeding. Other newly proposed metrics are hypothesized to predict variation in aspects of mandibular mechanical advantage that may be specific to Loricariidae and perhaps shared with other herbivorous and detritivorous fishes. 2011. © 2011Wiley Periodicals, Inc.  相似文献   

2.
The robust skull and highly subdivided adductor mandibulae muscles of triggerfishes provide an excellent system within which to analyze the evolutionary processes underlying phenotypic diversification. We surveyed the anatomical diversity of balistid jaws using Procrustes‐based geometric morphometric analyses and a phylomorphospace approach to quantifying morphological transformation through evolution. We hypothesized that metrics of interspecific cranial shape would reveal patterns of phylogenetic diversification that are congruent with functional and ecological transformation. Morphological landmarks outlining skull and adductor mandibulae muscle shape were collected from 27 triggerfish species. Procrustes‐transformed skull shape configurations revealed significant phylogenetic and size‐influenced structure. Phylomorphospace plots of cranial shape diversity reveal groupings of shape between different species of triggerfish that are mostly consistent with phylogenetic relatedness. Repeated instances of convergence upon similar cranial shape by genetically disparate taxa are likely due to the functional demands of shared specialized dietary habits. This study shows that the diversification of triggerfish skulls occurs via modifications of cranial silhouette and the positioning of subdivided jaw adductor muscles. Using the morphometric data collected here as input to a biomechanical model of triggerfish jaw function, we find that subdivided jaw adductors, in conjunction with a unique cranial skeleton, have direct biomechanical consequences that are not always congruent with phylomorphospace patterns in the triggerfish lineage. The integration of geometric morphometrics with biomechanical modeling in a phylogenetic context provides novel insight into the evolutionary patterns and ecological role of muscle subdivisions in triggerfishes. J. Morphol. 277:737–752, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Static biting in lizards: functional morphology of the temporal ligaments   总被引:2,自引:0,他引:2  
A. Herrel  P. Aerts  D. De  Vree 《Journal of Zoology》1998,244(1):135-143
  相似文献   

4.
Morphological analysis of the skull of the subterranean rodent Ctenomys , a highly speciose genus which uses both claws and teeth when digging, shows that for a broad range of species size, scaling was associated with both variation and maintenance of shape. Our results show that the angle of incisor procumbency (AIP), a character largely viewed as an adaptation to digging with teeth, is highly variable. We found a non-significant relationship between AIP and basicranial axis (basioccipital + basisphenoid) length, a measure of overall skull size. Accordingly, both small and large Ctenomys species possess either high or low AIP. A significant relationship between AIP and diastema length, given the rostral allometry seen in Ctenomys , suggests that hypermorphosis to a certain extent influences AIP. However, the roots of the incisor are lateral to those of the cheek teeth and their position may thus shift freely. This observation supports the notion that skull structural design, and to a certain extent rostral allometry, underlies variation in AIP. On the other hand, the positive allometry of incisor width and thickness indicates that, in larger species, proportionately powerful incisors are able to resist greater bending forces. We found that the out-lever arm of the jaw adductor muscles scales with positive allometry against basicranial axis length. However, we found an isometric relationship between in- and out-lever arms. In this case, conservation of skull proportions, regardless of variation in size, is a feature possibly related to the maintenance of an effective tooth digging capability. Functional and ecological data are discussed when assessing the implications of size and shape variation in the skull of Ctenomys .  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 78 , 85−96.  相似文献   

5.
6.
Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre‐existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best‐fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated – albeit very gradual – ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade.  相似文献   

7.
The link between claw morphology and function has been historically difficult to quantify, analyze, and interpret. A confounding factor is the ambiguous morphological relationship between the ungual and the sheath and whether one structure or the other is more useful for inferring function from morphology. In this study, the functional morphology of vertebrate claws is analyzed using sheath and ungual measurements taken from modern claw specimens spanning birds and mammals. Claw measurements were chosen for their potential biomechanical significance and a revised, expanded categorization of claw function is used. When corresponding claw measurements from the ungual and sheath are compared independently, some features are highly correlated whereas others are not. A principal component analysis of the claw measurements reveals that some of the morphological disparity is related to functional differences; however, different functional categories are not clearly separated based solely on morphology. A linear discriminant analysis incorporating a supervised dimensionality reduction method (J-function) successfully classifies 94.52% of the claw specimens to their documented functional categories. When the posterior probabilities of each classification are examined, and the next highest probabilities are considered, the analysis can successfully classify 98.63% of the claw specimens. Sheath measurements perform better than ungual measurements but combining measurements from both structures perform better than considering either structure individually. Both structures contribute valuable morphological information when it comes to inferring claw function from morphology.  相似文献   

8.
During the Mississippian (Tournaisian), numerous crinoid genera of the subclass Camerata evolved exaggerated anal tubes, cylindrical extensions of the tegmen with the anus at the distal end. Additionally, camerates exhibit higher frequency of platyceratid gastropod infestation than any other crinoid clade leading some researchers to speculate that anal tubes evolved in response to platyceratid parasitism. To test the infestation avoidance role of anal tubes, platyceratid distribution was analyzed among 636 tubed and 675 tubeless crinoids from Mississippian strata in North America. Results demonstrate significantly higher infestation frequency in tubeless crinoids. Rather than attach to the anal vent, as is typical for platyceratids, the gastropods that infested tubed crinoids are always found at the tube base and acquired nutrients from their hosts via drilling. It is likely that infesting tubeless crinoids was a more cost effective trophic strategy than drilling tubed crinoids.  相似文献   

9.
10.
Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.  相似文献   

11.
12.
13.
The Labridae (including wrasses, the Odacidae and the Scaridae) is a species‐rich group of perciform fishes whose members are prominent inhabitants of warm‐temperate and tropical reefs worldwide. We analyse functionally relevant morphometrics for the feeding apparatus of 130 labrid species found on the Great Barrier Reef and use these data to explore the morphological and mechanical basis of trophic diversity found in this assemblage. Morphological measurements were made that characterize the functional and mechanical properties of the oral jaws that are used in prey capture and handling, the hyoid apparatus that is used in expanding the buccal cavity during suction feeding, and the pharyngeal jaw apparatus that is used in breaking through the defences of shelled prey, winnowing edible matter from sand and other debris, and pulverizing the algae, detritus and rock mixture eaten by scarids (parrotfishes). A Principal Components Analysis on the correlation matrix of a reduced set of ten variables revealed complete separation of scarids from wrasses on the basis of the former having a small mouth with limited jaw protrusion, high mechanical advantage in jaw closing, and a small sternohyoideus muscle and high kinematic transmission in the hyoid four‐bar linkage. Some scarids also exhibit a novel four‐bar linkage conformation in the oral jaw apparatus. Within wrasses a striking lack of strong associations was found among the mechanical elements of the feeding apparatus. These weak associations resulted in a highly diverse system in which functional properties occur in many different combinations and reflect variation in feeding ecology. Among putatively monophyletic groups of labrids, the cheilines showed the highest functional diversity and scarids were moderately diverse, in spite of their reputation for being trophically monomorphic and specialized. We hypothesize that the functional and ecological diversity of labrids is due in part to a history of decoupled evolution of major components of the feeding system (i.e. oral jaws, hyoid and pharyngeal jaw apparatus) as well as among the muscular and skeletal elements of each component. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 1–25.  相似文献   

14.
Ecological specialization is a central driver of adaptive evolution. However, selective pressures may uniquely affect different ecomorphological traits (e.g., size and shape), complicating efforts to investigate the role of ecology in generating phenotypic diversity. Comparative studies can help remedy this issue by identifying specific relationships between ecologies and morphologies, thus elucidating functionally relevant traits. Jaw shape is a dietary correlate that offers considerable insight on mammalian evolution, but few studies have examined the influence of diet on jaw morphology across mammals. To this end, I apply phylogenetic comparative methods to mandibular measurements and dietary data for a diverse sample of mammals. Especially powerful predictors of diet are metrics that capture either the size of the angular process, which increases with greater herbivory, or the length of the posterior portion of the jaw, which decreases with greater herbivory. The size of the angular process likely reflects sizes of attached muscles that produce jaw movements needed to grind plant material. Further, I examine the impact of feeding ecology on body mass, an oft-used ecological surrogate in macroevolutionary studies. Although body mass commonly increases with evolutionary shifts to herbivory, it is outperformed by functional jaw morphology as a predictor of diet. Body mass is influenced by numerous factors beyond diet, and it may be evolutionarily labile relative to functional morphologies. This suggests that ecological diversification events may initially facilitate body mass diversification at smaller taxonomic and temporal scales, but sustained selective pressures will subsequently drive greater trait partitioning in functional morphologies.  相似文献   

15.
16.
Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas (Crocuta crocuta) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual “role‐reversed” pattern of female dominance over males in this species. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
A realistic understanding of primate morphological adaptations requires a multidisciplinary approach including experimental studies of physiological performance and field studies documenting natural behaviors and reproductive success. For primate feeding, integrative efforts combining experimental and ecological approaches are rare. We discuss methods for collecting maximum bite forces in the field as part of an integrated ecomorphological research design. Specifically, we compare maximum biting ability in 3 sympatric bamboo lemurs (Hapalemur simus, H. aureus, and H. griseus) at Ranomafana National Park, Madagascar to determine if biting performance contributes to the observed partitioning of a shared bamboo diet. We assessed performance by recording maximum bite forces via jaw-muscle stimulations in anesthetized subjects from each species. Behavioral observations and food properties testing show that the largest species, Hapalemur simus, consumes the largest and most mechanically challenging foods. Our results suggest that Hapalemur simus can generate larger bite forces on average than those of the 2 smaller species. However, the overlap in maximum biting ability between Hapalemur simus and H. aureus indicates that biting performance cannot be the sole factor driving dietary segregation. Though maximum bite force does not fully explain dietary segregation, we hypothesize that size-related increases in both maximum bite force and jaw robusticity provide Hapalemur simus with an improved ability to process routinely its more obdurate diet. We demonstrate the feasibility of collecting physiological, ecological, and morphological data on the same free-ranging primates in their natural habitats. Integrating traditionally laboratory-based approaches with field studies broadens the range of potential primate species for physiological research and fosters improved tests of hypothesized feeding adaptations.  相似文献   

18.
The skull and jaw musculature as guides to the ancestry of salamanders   总被引:4,自引:0,他引:4  
The fossil record provides no evidence supporting a unique common ancestry for frogs, salamanders and apodans. The ancestors of the modern orders may have diverged from one another as recently as 250 million years ago, or as long ago as 400 million years according to current theories of various authors. In order to evaluate the evolutionary patterns of the modern orders it is necessary to determine whether their last common ancestor was a rhipidistian fish, a very primitive amphibian, a labyrimhodom or a ‘lissamphibian’. The broad cranial similarities of frogs and salamanders, especially the dominance of the braincase as a supporting element, can be associated with the small size of the skull in their immediate ancestors. Hynobiids show the most primitive cranial pattern known among the living salamander families and “provide a model for determining the nature of the ancestors of the entire order. Features expected in ancestral salamanders include: (1) Emargination of the cheek; (2) Movable suspensorium formed by the quadrate, squamosal and pterygoid; (3) Occipital condyle posterior to jaw articulation; (4) Distinct prootic and opisthotic; (5) Absence ol otic notch; (6) Stapes forming a structural link between braincase and cheek. In the otic region, cheek and jaw suspension, the primitive salamander pattern (resembles most closely the microsaurs among known Paleozoic amphibians, and shows no significant features in common with either ancestral frogs or the majority of labyrinth odonts. The basic pattern of the adductor jaw musculature is consistent within both frogs and salamanders, but major differences are evident between the two groups. The dominance of the adductor mandibulae externus in salamanders can be associated with the open cheek in all members of that order, and the small size of this muscle in frogs can be associated with the large otic notch. The spread of different muscles over the otic capsule, the longus head ol the adductor mandibulae posterior in frogs and the superficial head of the adductor mandibulae internus in salamanders, indicates that fenestration of the skull posterodorsal to the orbit occurred separately in the ancestors of the two groups. Reconstruction of the probable pattern of the jaw musculature in Paleozoic amphibians indicates that frogs and salamanders might have evolved from a condition hypothesized for primitive labyrinthodonts, but the presence of a large otic notch in dissorophids suggests specialization toward the anuran, not the urodele condition. The presence of either an einarginated cheek or an embayment of the lateral surface of the dentary and the absence of an otic notch in microsaurs indicate a salamander-like distribution of die adductor jaw muscles. The ancestors of frogs and salamanders probably diverged from one another in the early Carboniferous, Frogs later evolved from small labyrinthodonts and salamanders from microsaurs. Features considered typical of lissamphibians evolved separately in the two groups in the late Permian andTriassic.  相似文献   

19.
黄林娟  于燕妹  安小菲  余林兰  薛跃规 《生态学报》2022,42(24):10264-10275
以天坑内部-边缘-外部森林植物群落为研究对象,通过调查植物的群落结构、叶功能性状,探究天坑内外森林植物群落叶功能性状、物种多样性和功能多样性变化特征及其内在关联,为深入了解负地形森林生态系统的功能和恢复退化喀斯特地区的植被提供一定参考。研究结果如下:(1)比叶面积(SLA: 198.75 cm2/g))、叶面积(LA: 42.70 cm2)、叶磷含量(LPC: 1.70 g/kg)和叶钾含量(LKC: 10.27 g/kg)在天坑内部最高,叶组织密度(LTD: 0.32 g/cm3)和叶干物质含量(LDMC: 0.41 g/g)在天坑外部最高,天坑内外森林均易受到磷限制,表明随天坑内部-边缘-外部生境变化,植物对环境的适应机制和生存策略发生了部分调整,物种的防御策略增强,生长投入策略减弱。(2)Shannon-Wiener指数(2.82)、Simpson指数(0.92)和Pielou’s均匀度指数(0.87)均以天坑外部最高,功能丰富度(1.05)、功能离散度(1.88)和Rao’s二次熵(4.52)以天坑内部最高,表明随天坑内部-边缘-外部生境的变化,植物功能性状的差异减少,物种分布及其功能性状分布总体上更为均匀、物种数量增多。(3)物种多样性指数之间、功能多样性指数之间存在较强的相关性,表明物种多样性指数之间、功能多样性指数之间存在不同的制约关系。(4)叶功能性状与物种多样性、功能多样性的相关性强,物种多样性和功能多样性之间相关性较弱,表明叶性状对生态学过程的变化较为敏感,叶功能性状与物种多样性之间存在较强的耦合关系。  相似文献   

20.
Cities are fundamentally changing the environment that plants inhabit, most notably through habitat fragmentation. Urban plant habitat patches are separated by impervious surfaces like buildings and roads and may vary from small, isolated green spaces to large green spaces like parks. Understanding the consequences of this urban fragmentation on seed dispersal is essential to both maintain urban biodiversity and mitigate the spread of unwanted weeds or invasive species but we currently lack enough empirical data to draw generalities. Theoretical reasoning (via both verbal and mathematical models) is well positioned to contribute to this knowledge gap in dispersal by providing useful predictions when empirical data are lacking. Variation in dispersal can easily be captured by models by incorporating different dispersal kernel shapes, and multiple habitat configurations can be examined. Urban environments are rarely considered by mathematical models, and our literature review indicates that most models that include dispersal variation via a dispersal kernel use only one or two shapes, suggesting a gap in the theoretical literature as well. We present a proof-of-concept model of fragmentation in an urban environment illustrating how varying habitat width can lead to different outcomes depending on the dispersal kernel. We also provide some thoughts for future directions on the application of mathematical models in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号