首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of individual supplements necessary for the long‐term self‐renewal of embryonic stem (ES) cells is poorly characterized in feeder/serum‐free culture systems. This study sought to characterize the relationship between the effects of glucose on ES cell proliferation and fibronectin (FN) synthesis, and to assess the mechanisms responsible for these cellular effects of glucose. Treatment of the two ES cells (ES‐E14TG2a and ES‐R1) with 25 mM glucose (high glucose) increased the expression levels of FN mRNA and protein. In addition, high glucose and ANG II synergistically increased FN expression level, which coincident with data showing that high glucose increased the mRNA expression of angiotensin II (ANG II) type 1 receptor (AT1R), angiotensinogen, and FN, but not ANG II type 2 receptor. High glucose also increased the intracellular calcium (Ca2+) concentration and pan‐protein kinase C (PKC) phosphorylation. Inhibition of the Ca2+/PKC pathway blocked high glucose‐induced FN expression. High glucose or ANG II also synergistically increased transforming growth factor‐beta1 (TGF‐β1) expression, while pretreatment with losartan abolished the high glucose‐induced increase in TGF‐β1 production. Moreover, TGF‐β1‐specific small interfering RNA inhibited high glucose‐induced FN expression and c‐Jun N‐terminal kinase (JNK) activation. The JNK inhibitor SP600125 blocked high glucose‐induced FN expression and inhibited cell cycle regulatory protein expression induced by high glucose or TGF‐β1. In this study, inhibition of AT1R, Ca2+/PKC, TGF‐β1, JNK, FN receptor blocked the high glucose‐induced DNA synthesis, increased the cell population in S phase, and the number of cells. It is concluded that high glucose increases FN synthesis through the ANG II or TGF‐β1 pathways, which in part mediates proliferation of mouse ES cells. J. Cell. Physiol. 223: 397–407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

3.
4.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
A defective expression or activity of neurotrophic factors, such as brain‐ and glial‐derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor‐β (TGF‐β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF‐β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post‐mortem brain tissues showed that TGF‐β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF‐β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF‐β1 formation in asymptomatic R6/2 mice, where blood TGF‐β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF‐β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF‐β1 production is associated with HD. Accordingly, reduced TGF‐β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock‐in cell lines expressing full‐length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF‐β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF‐β1 levels in the brain may influence the progression of HD.  相似文献   

6.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia.  相似文献   

7.
17beta-Estradiol (E(2)) is a steroid hormone well known for its roles in the regulation of various cell functions. However, the precise role that E(2) plays in the proliferation of human mesenchymal stem cells (hMSCs) has not been completely elucidated. In the present study, we examined the effects of E(2) on cell proliferation and the related signaling pathways using hMSCs. We showed that E(2), at > or =10(-9) M, significantly increased [3H]thymidine incorporation after 24 h of incubation, and E(2) also increased [3H]thymidine incorporation at >6 h. Also, E(2) significantly increased the percentage of the cell population in the S phase based on FACS analysis. Moreover, E(2) increased estrogen receptor (ER), PKC, phosphatidylinositol 3-kinase (PI3K)/Akt, and MAPK phosphorylation. Subsequently, these signaling molecules were involved in an E(2)-induced increase of [3H]thymidine incorporation. E(2) also increased hypoxia-inducible factor (HIF)-1alpha and VEGF protein levels. These levels of protein expression were inhibited by ICI-182,780 (10(-6) M, an ER antagonist), staurosporine and bisindolylmaleimide I (10(-6) M, a PKC inhibitor), LY-294002 (10(-6) M, a PI3K inhibitor), Akt inhibitor (10(-5) M), SP-600125 (10(-6) M, a SAPK/JNK inhibitor), and PD-98059 (10(-5) M, a p44/42 MAPKs inhibitor). In addition, HIF-1alpha small interfering (si)RNA and ICI-182,780 inhibited E(2)-induced VEGF expression and cell proliferation. VEGF siRNA also significantly inhibited E(2)-induced cell proliferation. In conclusion, E(2) partially stimulated hMSC proliferation via HIF-1alpha activation and VEGF expression through PKC, PI3K/Akt, and MAPK pathways.  相似文献   

8.
9.
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10?8 to 10?6 M, significantly increased migration after a 24 h incubation, and DEX (10?6 M) increased migration at >12 h. Moreover, DEX (10?6 M) increased the level of glucocorticoid receptor (GR)‐α mRNA and protein expression, but not GR‐β mRNA. The increases in DEX‐induced migration were inhibited by the GR antagonist mifepristone (10?7 M). In addition, DEX increased integrin‐linked kinase (ILK) and α‐parvin expression but did not change PINCH‐1/2 expression in lysate. DEX also increased formations of complex with ILK and α‐parvin, and ILK and PINCH‐1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX‐induced migration was blocked by ILK and α‐parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α‐parvin siRNAs. DEX‐induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1‐integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX‐induced cell migration was inhibited by β1‐integrin siRNA. Downregulation of ILK, α‐parvin, FAK/paxillin and β1‐integrin expression by siRNAs decreased DEX‐induced filamentous(F)‐actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1‐integrin through formation of a PINCH‐1/2/ILK/α‐parvin complex (PIP complex), and FAK and paxillin expression. J. Cell. Physiol. 226: 683–692, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Receptor‐interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor‐β 1 (TGF‐β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF‐β signaling during epidermal homeostasis‐related events and suppression of RIPK4 expression by TGF‐β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor‐κB (NF‐κB), protein kinase C (PKC), wingless‐type MMTV integration site family (Wnt), and (mitogen‐activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad‐mediated TGF‐β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad‐mediated TGF‐β1 signaling events through suppression of TGF‐β1‐induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3‐Smad4 interaction, nuclear localization, and TGF‐β1‐induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound‐scratch assay demonstrated that RIPK4 suppressed TGF‐β1‐mediated wound healing through blocking TGF‐β1‐induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF‐β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF‐β1 signaling.  相似文献   

11.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

13.
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.  相似文献   

14.
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients.  相似文献   

15.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

16.
Lung cancer remains a leading cause to cancer‐related death worldwide. The anti‐cancer ability of microRNA‐144‐3p has been reported in many cancer types. This study focused on the mechanisms underlying miR‐144‐3p in inhibiting lung cancer. The expression levels of miR‐144‐3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR‐144‐3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor‐β1 (TGF‐β1). Small interfering transfection or TGF‐β1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR‐144‐3p inhibitor and siSrc were co‐transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src–protein kinase B–extracellular‐regulated protein kinases (Src–Akt–Erk) pathway was determined using Western blot. The downregulated miR‐144‐3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR‐144‐3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF‐β1. The inhibition of Src could block the promotive effects of miR‐144‐3p inhibitor and TGF‐β1 on cell invasion and adhesion. Furthermore, we found that miR‐144‐3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF‐β1‐induced cell invasion and adhesion of lung cancer, and that miR‐144‐3p could effectively suppress TGF‐β1‐induced aggressive lung cancer cells by regulating Src expression.  相似文献   

17.
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix proteins, is one of the causes of heart failure, and it contributes to the impairment of cardiac function. Fibrosis of various tissues, including the heart, is believed to be regulated by the signalling pathway of angiotensin II (Ang II) and transforming growth factor (TGF)‐β. Transgenic expression of inhibitory polypeptides of the heterotrimeric G12 family G protein (Gα12/13) in cardiomyocytes suppressed pressure overload‐induced fibrosis without affecting hypertrophy. The expression of fibrogenic genes (TGF‐β, connective tissue growth factor, and periostin) and Ang‐converting enzyme (ACE) was suppressed by the functional inhibition of Gα12/13. The expression of these fibrogenic genes through Gα12/13 by mechanical stretch was initiated by ATP and UDP released from cardiac myocytes through pannexin hemichannels. Inhibition of G‐protein‐coupled P2Y6 receptors suppressed the expression of ACE, fibrogenic genes, and cardiac fibrosis. These results indicate that activation of Gα12/13 in cardiomyocytes by the extracellular nucleotides‐stimulated P2Y6 receptor triggers fibrosis in pressure overload‐induced cardiac fibrosis, which works as an upstream mediator of the signalling pathway between Ang II and TGF‐β.  相似文献   

18.
Abstract. Objectives: We have evaluated the physiological roles of transforming growth factor‐β1 (TGF‐β1) on differentiation, migration, proliferation and anti‐apoptosis characteristics of cultured spinal cord‐derived neural progenitor cells. Methods: We have used neural progenitor cells that had been isolated and cultured from mouse spinal cord tissue, and we also assessed the relevant reaction mechanisms using an activin‐like kinase (ALK)‐specific inhibitory system including an inhibitory RNA, and found that it involved potential signalling molecules such as phosphatidylinositol‐3‐OH kinase (PI3K)/Akt and mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK1/2). Results and Conclusions: Transforming growth factor‐β1‐mediated cell population growth was activated after treatment and was also effectively blocked by an ALK41517‐synthetic inhibitor (4‐(5‐benzo(1,3) dioxol‐5‐yl‐4‐pyridine‐2‐yl‐1H‐imidazole‐2‐yl) benzamide (SB431542) and ALK siRNA, thereby indicating the involvement of SMAD2 in the TGF‐β1‐mediated growth and migration of these neural progenitors cells (NPC). In the present study, TGF‐β1 actively induced NPC migration in vitro. Furthermore, TGF‐β1 demonstrated extreme anti‐apoptotic behaviour against hydrogen peroxide‐mediated apoptotic cell death. At low dosages, TGF‐β1 enhanced (by approximately 76%) cell survival against hydrogen peroxide treatment via inactivation of caspase‐3 and ‐9. TGF‐β1‐treated NPCs down‐regulated Bax expression and cytochrome c release; in addition, the cells showed up‐regulated Bcl‐2 and thioredoxin reductase 1. They also had increased p38, Akt and ERK1/2 phosphorylation, showing the involvement of both the PI3K/Akt and MAPK/ERK1/2 pathways in the neuroprotective effects of TGF‐β1. Interestingly, these effects operate on specific subtypes of cells, including neurones, neural progenitor cells and astrocytes in cultured spinal cord tissue‐derived cells. Lesion sites of spinal cord‐overexpressing TGF‐β1‐mediated prevention of cell death, cell growth and migration enhancement activity have been introduced as a possible new basis for therapeutic strategy in treatment of neurodegenerative disorders, including spinal cord injuries.  相似文献   

19.
Tetraspanin 1(TSPAN1) as a clinically relevant gene target in cancer has been studied, but there is no direct in vivo or vitro evidence for pulmonary fibrosis (PF). Using reanalysing Gene Expression Omnibus data, here, we show for the first time that TSPAN1 was markedly down‐regulated in lung tissue of patient with idiopathic PF (IPF) and verified the reduced protein expression of TSPAN1 in lung tissue samples of patient with IPF and bleomycin‐induced PF mice. The expression of TSPAN1 was decreased and associated with transforming growth factor‐β1 (TGF‐β1)‐induced molecular characteristics of epithelial‐to‐mesenchymal transition (EMT) in alveolar epithelial cells (AECs). Silencing TSPAN1 promoted cell migration, and the expression of alpha‐smooth muscle actin, vimentin and E‐cadherin in AECs with TGF‐β1 treatment, while exogenous TSPAN1 has the converse effects. Moreover, silencing TSPAN1 promotes the phosphorylation of Smad2/3 and stabilizes beta‐catenin protein, however, overexpressed TSPAN1 impeded TGF‐β1‐induced activation of Smad2/3 and beta‐catenin pathway in AECs. Together, our study implicates TSPAN1 as a key regulator in the process of EMT in AECs of IPF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号