首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klumpp S 《PloS one》2011,6(5):e20403
Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control.  相似文献   

2.
The synthesis of stable RNA in bacteria is known to be regulated by a stringent control mechanism. Characteristic of stringent-regulated promoters, all ribosomal RNA promoters P1, but not P2, contain a GC-rich discriminator sequence assumed to be important for such a control. Using site-directed mutagenesis we have altered both the rrnB P2 and the synthetic tac promoter to the consensus GCGC discriminator motif. The modified promoters were placed upstream of the structural gene encoding the chloramphenicol acetyltransferase. The response of the modified promoters to amino acid starvation, changes in the growth rate or differences in the basal level of guanosine tetraphosphate (ppGpp) were determined in vivo. The results clearly show, that the discriminator motif is sufficient to convert the ribosomal RNA promoter P2 to a stringent, as well as growth-rate regulated, promoter. By contrast, the same discriminator sequence linked to the synthetic tac promoter does not convert this promoter to either stringency or growth-rate regulation. Finally, the results presented in this study reinforce the view that stringent and growth-rate regulation utilize the same mechanism, with ppGpp being the common mediator.  相似文献   

3.
4.
5.
6.
Light-at-night (LAN) is a worldwide problem co-distributed with breast cancer prevalence. We hypothesized that exposure to LAN is coincided with a decreased melatonin (MLT) secretion level, followed by epigenetic modifications and resulted in higher breast cancer tumors growth-rate. Accordingly, we studied the effect of LAN exposure and exogenous MLT on breast cancer tumors growth-rate. 4T1 cells were inoculated into BALB/c short day-acclimated mice, resulting in tumors growth. Growth rates were followed under various light exposures and global DNA methylations were measured. Results demonstrated the positive effect of LAN on tumors growth-rate, reversed by MLT through global DNA methylation.  相似文献   

7.
8.
9.
《Biophysical journal》2022,121(12):2436-2448
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the length of single actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here, we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth-rate modulation by actin-binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning filamentous actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.  相似文献   

10.
Gene regulatory networks exhibit complex, hierarchical features such as global regulation and network motifs. There is much debate about whether the evolutionary origins of such features are the results of adaptation, or the by-products of non-adaptive processes of DNA replication. The lack of availability of gene regulatory networks of ancestor species on evolutionary timescales makes this a particularly difficult problem to resolve. Digital organisms, however, can be used to provide a complete evolutionary record of lineages. We use a biologically realistic evolutionary model that includes gene expression, regulation, metabolism and biosynthesis, to investigate the evolution of complex function in gene regulatory networks. We discover that: (i) network architecture and complexity evolve in response to environmental complexity, (ii) global gene regulation is selected for in complex environments, (iii) complex, inter-connected, hierarchical structures evolve in stages, with energy regulation preceding stress responses, and stress responses preceding growth rate adaptations and (iv) robustness of evolved models to mutations depends on hierarchical level: energy regulation and stress responses tend not to be robust to mutations, whereas growth rate adaptations are more robust and non-lethal when mutated. These results highlight the adaptive and incremental evolution of complex biological networks, and the value and potential of studying realistic in silico evolutionary systems as a way of understanding living systems.  相似文献   

11.
12.
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits.This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.  相似文献   

13.
Evolution of Transposons: Natural Selection for Tn5 in ESCHERICHIA COLI K12   总被引:9,自引:1,他引:8  
A novel in vivo effect of the transposable element Tn5 has been observed in chemostats when certain isogenic Tn5 and non-Tn5 strains of Escherichia coli compete for a limiting carbon source in the absence of kanamycin. The Tn5-bearing strain has a more rapid growth rate and increases in frequency from 50% to 90% within the first 15 to 20 generations. The effect occurs when Tn5 is inserted at a variety of chromosomal locations or when the element is carried by an episome, but it is strain specific, having been observed in two out of three strains examined. (For reasons unknown, the effect has not been observed with derivatives of strain CSH12.) Although the growth-rate advantage of Tn5 is independent of nutrient concentration and generation time, it can be reduced by prior adaptation of the strains to limiting conditions, and the amount of reduction is proportional to the length of prior adaptation. The growth-rate effect is evidently not caused by beneficial mutations induced by Tn5 transposition, as Tn5-bearing strains selected in chemostats retain their initial Tn5 position and copy number. However, the effect does not occur in Tn5-112, a transpositionless deletion mutation missing the transposase-coding region of the right-hand IS sequence flanking the element. Since Tn5-112 retains a functional kanamycin-phosphotransferase gene, this gene is not responsible for the growth-rate effect. Thus, the effect evidently requires transposase function, but it does not involve actual transposition of the intact element. Altogether, these data provide a mechanism for the maintenance of Tn5 in bacterial populations in the absence of kanamycin, and they suggest a model for the proliferation and the maintenance of IS sequences and transposable elements in the absence of other identifiable selection pressures.  相似文献   

14.
Despite decades of studies meant to analyse the bacterial response to carbon limitation, we still miss a high-resolution overview of the situation. All gene expression changes observed in such conditions cannot solely be accounted for by the global regulator Crp either free or bound to its effector, cyclic AMP. Here, for the first time, we evaluated the response of both CDS (protein-coding sequence) and ncRNA (non-coding RNA) genes to carbon limitation, revealed cellular functions of differentially expressed genes systematically, quantified the contribution of Crp-cAMP and other factors to regulation and deciphered regulation strategies at a genomewide scale. Approximately one-third of the differentially expressed genes we identified responded to Crp-cAMP via its direct or indirect control, while the remaining genes were subject to growth rate-dependent control or were controlled by other regulators, especially RpoS. Importantly, gene regulation mechanisms can be established by expression pattern studies. Here, we propose a comprehensive picture of how cells respond to carbon scarcity. The global regulation strategies thus exposed illustrate that the response of cell to carbon scarcity is not limited to maintaining sufficient carbon metabolism via cAMP signalling while the main response is to adjust metabolism to cope with a slow growth rate.  相似文献   

15.
Pseudomonas putida mt-2, harbouring the TOL plasmid PWW0, was grown continuously on benzoate in a phauxostat at a non-limited rate. The gradual decrease in the population carrying the complete TOL plasmid was caused predominantly by a growth-rate advantage of spontaneous mutants carrying a partially deleted plasmid (TOL- cells). The growth-rate difference (v) was quantified both by measuring the increase in the dilution rate (from 0.68 to 0.79 h-1; v = 0.11 h-1) and by mathematical analysis of the ingrowth of TOL- cells (v = 0.12 h-1). The latter procedure also established that the segregation rate was of the order of magnitude 10(-5) h-1. Similar values for the growth-rate advantage and the segregation rate were found when both benzoate and succinate were present in non-limiting concentrations. It is suggested that the growth-rate disadvantage of the wild-type strain is caused by inhibitory effects of an intermediate in the degradation of benzoate via the plasmid-encoded meta-pathway.  相似文献   

16.
17.
Pseudomonas putida mt-2, harbouring the TOL plasmid pWW0, was grown in chemostat culture under succinate-, sulphate-, ammonium- or phosphate-limitation at different dilution rates. The fraction of mutant cells lacking the plasmid-encoded enzymes for the degradation of toluene and xylene (TOL- cells), was determined. Genetic analysis revealed that all TOL- cells isolated harboured partially deleted plasmids, lacking the TOL catabolic genes. The growth-rate advantage of the TOL- cells was quantified from the kinetics of their increase as a fraction of the total population. At a dilution rate of 0.1 h-1 no growth-rate advantage of TOL- cells was found when phosphate or ammonium were limiting. Under sulphate-limitation, ingrowth of TOL- cells was evident but did not follow a straightforward pattern. Under succinate-limitation the growth-rate advantage was the highest, particularly at low dilution rates (about 50% at D = 0.05 h-1). In phauxostat culture, at the maximal growth rate, the growth-rate advantage of TOL- cells was less than 1%. The specific activity in TOL+ cells of the plasmid-encoded enzyme catechol 2,3-dioxygenase was relatively high at a low growth rate.  相似文献   

18.
19.
We can distinguish two classes of membrane transport changes in cultured cells: (a) growth-rate contingent changes are those which occur in coordination with the onset of density-dependent inhibition of growth; (b) transformation-specific changes are those which occur when cells become transformed, and which can be detected even when normal and transformed cells are growing at the same rate. Growth-rate contingent changes include the density-dependent changes in phosphate, nucleoside, glucose, amino acid, and potassium transport. Only one transformation-specific transport change has been found in Rous-transformed chicken embryo fibroblasts: an increased rate of hexose transport. The variation in potassium transport are associated with variations in the number of ouabain binding sites in the membrane. The molecular basis for changes in the rate of hexose transport is unknown, although gross changes in membrane bilayer composition and "fluidity" seem not to be involved. In analyzing the regulation of hexose transport activity, we find that decreased cAMP may play a role in the transformation-specific increase in hexose transport, but that fibrinolytic activity is not necessary.  相似文献   

20.
Growth rate is an important variable and parameter in biology with a central role in evolutionary, functional genomics, and systems biology studies. In this review the pros and cons of the different technologies presently available for high-throughput measurements of growth rate are discussed. Growth rate can be measured in liquid microcultivation of individual strains, in competition between strains, as growing colonies on agar, as division of individual cells, and estimated from molecular reporters. Irrespective of methodology, statistical issues such as spatial biases and batch effects are crucial to investigate and correct for to ensure low false discovery rates. The rather low correlations between studies indicate that cross-laboratory comparison and standardization are pressing issue to assure high-quality and comparable growth-rate data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号