首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously found that selective restriction of amino acids inhibits invasion of two androgen-independent human prostate cancer cell lines, DU145 and PC3. Here we show that the restriction of tyrosine (Tyr) and phenylalanine (Phe), methionine (Met) or glutamine (Gln) modulates the activity of G proteins and affects the balance between two actin-binding proteins, cofilin and profilin, in these two cell lines. Selective amino acid restriction differentially reduces G protein binding to GTP in DU145 cells. Tyr/Phe deprivation reduces the amount of Rho-GTP and Rac1-GTP. Met deprivation reduces the amount of Ras-GTP and Rho-GTP, and Gln deprivation decreases Ras-GTP, Rac-GTP, and Cdc42-GTP. Restriction of these amino acids increases the amount of profilin, cofilin and phosphorylation of cofilin-Ser(3). Increased PAK1 expression and phosphorylation of PAK1-Thr(423), and Ser(199/204) are consistent with the increased phosphorylation of LIMK1-Thr(508). In PC3 cells, Tyr/Phe or Gln deprivation reduces the amount of Ras-GTP, and all of the examined amino acid restrictions reduce the amount of profilin. PAK1, LIMK1 and cofilin are not significantly altered. These data reveal that specific amino acid deprivation differentially affects actin dynamics in DU145 and PC3. Modulation on Rho, Rac, PAK1, and LIMK1 likely alter the balance between cofilin and profilin in DU145 cells. In contrast, profilin is inhibited in PC3 cells. These effects modulate directionality and motility to inhibit invasion.  相似文献   

2.
Relative specific amino acid dependency is one of the metabolic abnormalities of cancer cells, and restriction of specific amino acids induces apoptosis of prostate cancer cells. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), modulates Raf and Akt survival pathways and affects the function of mitochondria in DU145 and PC3, in vitro. These three restrictions inhibit energy production (ATP synthesis) and induce generation of reactive oxygen species (ROS). Restriction of Tyr/Phe or Met in DU145 and Met in PC3 reduces mitochondrial membrane potential (DeltaPsim) and induces caspase-dependent and -independent apoptosis. In DU145, Tyr/Phe or Met restriction reduces activity of Akt, mitochondrial distribution of phosphorylated Raf and apoptosis inducing factor (AIF), and increases mitochondrial distribution of Bak. Mitochondrial Bcl-XL is increased in Tyr/Phe-restricted but decreased in Met-restricted cells. Under Tyr/Phe or Met restriction, reduced mitochondrial Raf does not inactivate the pro-apoptotic function of Bak. Tyr/Phe restriction also inhibits Bcl-2 and Met restriction inhibits Bcl-XL in mitochondria. These comprehensive actions damage the integrity of the mitochondria and induce apoptosis of DU145. In PC3, apoptosis induced by Met restriction was not associated with alterations in intracellular distribution of Raf, Bcl-2 family proteins, or AIF. All of the amino acid restrictions inhibited Akt activity in this cell line. We conclude that specific amino acid restriction differentially interferes with homeostasis/balance between the Raf and Akt survival pathways and with the interaction of Raf and Bcl-2 family proteins in mitochondria to induce apoptosis of DU145 and PC3 cells.  相似文献   

3.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
O Vi?as  S Vilaro  E Herrera  X Remesar 《Life sciences》1987,40(18):1745-1749
The effects of chronic ethanol consumption on mammary gland amino acid uptake at the 15th day of lactation in the rat have been studied. Ethanol treatment decreased the arterial levels of Ala, Asp, Gly, Pro, Lys and Met, and increased those of Gln and alpha-amino-butyrate. Chronic ethanol treatment produced a decrease in the arteriovenous differences of Asp, Thr, Arg, Met and Phe, and increased those of Ala, Gln, Gly, Pro and Tyr. The combination of the calculated values of relative extraction and the arteriovenous differences indicate that these alterations in amino acid uptake are related to changes in the transport process for Ala, Asp, Thr, Pro, Arg, Asn, Gly, Tyr, and Phe, and that the alterations in the arteriovenous differences of Gln, Lys and Met are due to the affected arterial levels of these amino acids. Measurements of enzymatic activities in the mammary gland show that these alterations in the amino acid transport process cannot be ascribed to changes in the gamma-glutamyl cycle.  相似文献   

5.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

6.
7.
N‐(tert‐butyloxycarbonyl) or N‐(9‐fluorenylmethoxycarbonyl) dipeptides with C‐terminal (Z)‐α,β‐didehydrophenylalanine (?ZPhe), (Z)‐α,β‐didehydrotyrosine (?ZTyr), (Z)‐α,β‐didehydrotryptophan (?ZTrp), (Z)‐α,β‐didehydromethionine (?ZMet), (Z)‐α,β‐didehydroleucine (?ZLeu), and (Z/E)‐α,β‐didehydroisoleucine (?Z/EIle) were synthesised from their saturated analogues via oxidation of intermediate 2,5‐disubstituted‐oxazol‐5‐(4H)‐ones (also known as azlactones) with pyridinium tribromide followed by opening of the produced unsaturated oxazol‐5‐(4H)‐one derivatives in organic‐aqueous solution with a catalytic amount of trifluoroacetic acid or by a basic hydrolysis. In all cases, a very strong preference for Z isomers of α,β‐didehydro‐α‐amino acid residues was observed except of the ΔIle, which was obtained as the equimolar mixture of Z and E isomers. Reasons for the (Z)‐stereoselectivity and the increased stability of the aromatic α,β‐didehydro‐α‐amino acid residue oxazol‐5‐(4H)‐ones over the corresponding aliphatic ones are also discussed. It is the first use of such a procedure to synthesise peptides with the C‐terminal unsaturated residues and a peptide with 2 consecutive ΔPhe residues. This approach is very effective especially in the synthesis of peptides with aliphatic α,β‐didehydro‐α‐amino acid residues that are difficult to obtain by other methods. It allowed the first synthesis of the ?Met residue. It is also more cost‐effective and less laborious than other synthesis protocols. The dipeptide building blocks obtained were used in the solid‐phase synthesis of model peptides on a polystyrene‐based solid support. Peptides containing aromatic α,β‐didehydro‐α‐amino acid residues were obtained with PyBOP or TBTU as a coupling agent with good yields and purities. In the case of aliphatic α,β‐didehydro‐α‐amino acid residues, a good efficiency was achieved only with DPPA as a coupling agent.  相似文献   

8.
Induction of HIF-1α by oxygen limitation promotes increased phosphorylation and catalytic depression of mitochondrial pyruvate dehydrogenase (PDH) and an enhanced glycolytic poise in cells. Cobalt chloride and desferrioxamine are widely used as mimics for hypoxia because they increase the levels of HIF-1α. We evaluated the ability of these agents to elicit selected physiological responses to hypoxia as a means to metabolically precondition mammalian cells, but without the detrimental effects of hypoxia. We show that, while CoCl2 does increase HIF-1α in a dose-dependent manner, it unexpectedly and strikingly decreases PDH phosphorylation at E1α sites 1, 2, and 3 (Ser293, Ser300, and Ser232, respectively) in HepG2 cells. This same effect is also observed for site 1 in mouse NIH/3T3 fibroblasts and J774 macrophages. CoCl2 unexpectedly decreases the mRNA expression for PDH kinase-2 in HepG2 cells, which likely explains the dephosphorylation of PDH observed. And nor does desferrioxamine promote the expected increase in PDH phosphorylation. Dimethyloxaloylglycine (a prolyl hydroxylase inhibitor) performs better in this regard, but failed to promote the stronger effects seen with hypoxia. Consequently, CoCl2 and desferrioxamine are unreliable mimics of hypoxia for physiological events downstream of HIF-1α stabilization. Our study demonstrates that mimetic chemicals must be chosen with caution and evaluated thoroughly if bona fide cellular outcomes are to be promoted with fidelity.  相似文献   

9.
Glucose inhibits development of hamster 8-cell embryos in vitro   总被引:3,自引:0,他引:3  
Relative preferences of energy substrates (glucose, pyruvate, and lactate) for in vitro development of hamster 8-cell embryos were investigated. Using protein-free modified Tyrode's medium (TLP-PVA) containing 10 mM lactate (L), 0.1 mM pyruvate (P), and amino acids (Phe, Ile, Met and Gln), we found that development of hamster 8-cell embryos to blastocysts was supported better in the absence of glucose than in medium containing (standard) 5 mM glucose (88.1% and 50%, respectively). Addition of even 0.25 mM glucose to the medium significantly inhibited blastocyst formation (54.1%). Medium T-PVA, containing 5 mM glucose as sole energy substrate (without pyruvate, lactate, and amino acids), very poorly supported embryo development (less than or equal to 7.9% blastocysts), but addition of 0.1 mM pyruvate enhanced blastocyst formation (52%). Elimination of pyruvate in TL-PVA medium containing 5 mM glucose and amino acids markedly reduced blastocyst formation by 4-fold (13.5%); the optimal pyruvate concentration was 0.2 mM. However, if the same medium was devoid of glucose, blastocyst formation was high both in the absence (71.1%) and presence (83.3%) of 0.1 mM pyruvate. Similarly, in glucose-free T-PVA medium, addition of either 10 mM lactate or amino acids supported 8-cell embryo development to blastocysts (61.7% and 60.5%, respectively) as opposed to 18.8% and 30.6%, respectively, in the presence of 5 mM glucose. This augmented development in the absence of glucose is suggested to the due to the efficient conversion of lactate to pyruvate and of amino acids to amphibolic intermediates and hence their utilization via the Krebs cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Nutrients in uterine secretions are essential for development and survival of conceptuses (embryo and associated extraembryonic membranes) during pregnancy; however, little is known about changes in the amounts of specific nutrients in the uterine fluids of cyclic and pregnant ruminants. This study determined quantities of glucose, amino acids, glutathione, calcium, sodium, and potassium in uterine lumenal fluid from cyclic (Days 3-16) and pregnant (Days 10-16) ewes. Total recoverable glucose, Arg, Gln, Leu, Asp, Glu, Asn, His, beta-Ala, Tyr, Trp, Met, Val, Phe, Ile, Lys, Cys, Pro, glutathione, calcium, and sodium were greater in the uterine fluid of pregnant compared with cyclic ewes between Days 10 and 16. In cyclic ewes, only modest changes in the total amounts of glucose, Asn, Cit, Tyr, Trp, Met, Val, Cys, glutathione, calcium, and potassium were detected between Days 3 and 16. However, in pregnant ewes, amounts of glucose, Arg, Gln, Glu, Gly, Cys, Leu, Pro, glutathione, calcium, and potassium in uterine fluids increased 3- to 23-fold between Days 10 and 14 and remained high to Day 16. Of particular interest were increases in glucose, Arg, Leu, and Gln in uterine flushings of pregnant ewes between Days 10 and 16 of pregnancy. Total amounts of His, ornithine, Lys, Ser, Thr, Ile, Phe, Trp, Met, and Cit in uterine fluids also increased, but to a lesser extent during early pregnancy. These novel results indicate activation of pregnancy-associated mechanisms for transport of nutrients into the uterine lumen, and they provide a framework for future studies of nutrients, including glucose, amino acids, and glutathione, required to activate nutrient-sensing cell signaling pathways for growth, development, and survival of conceptuses, as well as for optimization of culture media for in vitro studies of conceptus development.  相似文献   

11.
In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ‐aminobutyrate (GABA), tyrosine (Tyr), S‐adenosylhomocysteine (SAH), l ‐cystathionine (l ‐Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N‐acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham‐operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long‐lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l ‐Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu‐Gln/GABA cycle between neurons and astrocytes, and of the methyl‐cycle (demonstrated by decrease in Met, and increase in SAH and l ‐Cystat), throughout the post‐injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.  相似文献   

12.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

13.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.  相似文献   

15.
Glucose-induced insulin secretion from pancreatic β-cells depends on mitochondrial activation. In the organelle, glucose-derived pyruvate is metabolised along the oxidative and anaplerotic pathway to generate downstream signals leading to insulin granule exocytosis. Entry into the oxidative pathway is catalysed by pyruvate dehydrogenase (PDH) and controlled in part by phosphorylation of the PDH E1α subunit blocking enzyme activity. We find that glucose but not other nutrient secretagogues induce PDH E1α phosphorylation in INS-1E cells and rat islets. INS-1E cells and primary β-cells express pyruvate dehydrogenase kinase (PDK) 1, 2 and 3, which mediate the observed phosphorylation. In INS-1E cells, suppression of the two main isoforms, PDK1 and PDK3, almost completely prevented PDH E1α phosphorylation. Under basal glucose conditions, phosphorylation was barely detectable and therefore the enzyme almost fully active (90% of maximal). During glucose stimulation, PDH is only partially inhibited (to 78% of maximal). Preventing PDH phosphorylation in situ after suppression of PDK1, 2 and 3 neither enhanced pyruvate oxidation nor insulin secretion. In conclusion, although glucose stimulates E1α phosphorylation and therefore inhibits PDH activity, this control mechanism by itself does not alter metabolism-secretion coupling in INS-1E clonal β-cells.  相似文献   

16.
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site (i.e. Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study evaluated the effect of Crataegus aronia (C. aronia) aqueous extract on cardiac substrate utilization and insulin signaling in adult male healthy Wistar rats. Rats (n = 18/group) were either administered normal saline (vehicle) or treated with C. aronia aqueous extract (200 mg/kg) for 7 days, daily. Fasting plasma glucose and insulin levels were not significantly changed in C. aronia-treated rats but were significantly reduced after both the intraperitoneal glucose or insulin tolerance tests. Besides, C. aronia significantly increased the left ventricular (LV) activities of phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), two markers of glycolysis and glucose oxidation, respectively, and suppressed the levels of pyruvate dehydrogenase kinase 4 (PDK4), an inhibitor of PDH. Concomitantly, it significantly reduced the LV levels of carnitine palmitoyltransferase 1 (CPT1) and PPARα, two markers of fatty acid (FAs) oxidations. Under basal and insulin stimulation, C. aronia aqueous extract boosted insulin signaling in the LV of rats by increasing the protein levels of p-IRS (Tyr612) and p-Akt (Ser473) and suppressing protein levels of p-mTOR (Ser 2448) and p-IRS (Ser307). In parallel, C. aronia also increased the protein levels of GLUT-4 in the membrane fraction of the treated LVs. All these effects were also associated with a significant increase in AMPK activity (phosphorylation at Thr172), a major energy modulator that stimulates glucose utilization. In conclusion, short-term administration of C. aronia aqueous extract shifts the cardiac metabolism toward glucose utilization, thus making this plant a potential therapeutic medication in cardiac disorders with impaired metabolism.  相似文献   

18.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

19.
Structure-activity relationship of endothelin: importance of charged groups   总被引:6,自引:0,他引:6  
Endothelin (ET)-related peptides including ET-1 (1-39) were synthesized, and their constricting activity in rat pulmonary artery rings and pressor activity in unanesthetized rat were measured to elucidate their structure-activity relationship. The vasoconstrictor activities of ET-2, ET-3 and sarafotoxin S6b were one-half, one-60th and one-third that of ET-1, respectively. Such differences in biological activities should mainly arise from sequence heterogeneity at the N-terminal portion, especially at positions 4 to 7. All of the blocked ETs at the amino or carboxyl termini showed greatly decreased activities. A monocyclic analog, in which Cys3 and Cys11 were replaced by Ala, showed one-third the activity of ET-1; however, its deamino dicarba analog was almost completely inactive. Significant activities were retained even with replacement of amino acids at positions Ser4, Ser5, Leu6, Met7, Lys9, Tyr13, and Trp21 by Ala, Ala, Gly, Met(0), Leu, Phe, and Tyr or Phe, respectively. On the other hand, replacement of Asp8, Glu10 and Phe14 by Asn, Gln and Ala, respectively, resulted in complete loss of the biological activity. These results indicated that two disulfide bonds in ET molecule were not essential for the expression of vasoconstricting activity. Both terminal amino and carboxyl groups, carboxyl groups of Asp8 and Glu10, and the aromatic group of Phe14 seemed to be contributing, more or less, to the expression of the biological activities.  相似文献   

20.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号