首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, has been used to investigate the effects of controlled and uncontrolled growth on the dynamic properties of the lipid regions of hepatocyte plasma membranes. DPH was incubated with plasma membranes derived from quiescent and regenerating liver and Morris hepatoma 7777, and the resulting systems were studied by fluorescence polarization spectroscopy. Membranes from the rapidly growing hepatoma exhibited a significantly lower fluorescence polarization than observed in quiescent liver, suggesting the presence of a more fluid membrane lipid domain. Membranes from regenerating liver exhibited a time-dependent increase in membrane fluidity, reaching a maximum 12 h after growth stimulation. A close correspondence between membrane fluidity and the cholesterol-phospholipid ratio was also observed where a decrease in this ratio resulted in a more fluid lipid matrix. These results suggest that cell cycling, as observed in regenerating liver and Morris hepatoma 7777, results in significant increases in membrane fluidity, a property which may play an important regulatory role in various cell functions.  相似文献   

2.
1. Plasma membranes were isolated from normal liver, Morris hepatoma 7288C and regenerating liver, 6, 15, 24, and 48 hr after partial hepatectomy. 2. The cholesterol/phospholipid ratio was lower in regenerating liver 6 hr after partial hepatectomy (0.51) compared to the sham control (0.68), returning to normal after 15 hr. This was accompanied by a small increase in palmitic acid (16:0). There were no other changes in the lipid composition in regenerating hepatocytes in the first 48 hr after partial hepatectomy. 3. Analysis of lipid composition showed a higher cholesterol/phospholipid ratio in the hepatoma plasma membrane compared to normal liver accompanied by an increase in saturation of the fatty acyl groups of the phospholipids. There were also significant changes in the phospholipid classes. 4. There was no change in the two-dimensional electrophoretic profile of membrane proteins in the early stages of liver regeneration, however hepatoma membranes showed significant differences in protein profile. 5. These changes in the lipid composition of the hepatoma plasma membrane would have the effect of decreasing the average fluidity of the membrane and together with the changes in protein composition may be significant in the altered growth of the hepatoma. Changes in the lipid composition of the hepatocyte plasma membrane early in liver regeneration may reflect the onset of renewed cell division.  相似文献   

3.
Developing a method for isolating skate (Raja erinacea) basolateral liver plasma membranes, as well as characterizing the lipid composition and fluidity of these membranes, was the primary purpose of this study. Membranes were isolated using self-generating Percoll gradients. Marker enzyme studies indicate that this preparation is highly enriched in the basolateral domain of the liver plasma membrane and largely free of contamination by intracellular organelles or canalicular membranes. Further, these membranes contain the agency responsible for Na(+)-dependent alanine transport. This finding indicates that this membrane preparation will be useful for the study of skate liver plasma membrane transport processes. The lipid composition and fluidity (as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene) of the skate basolateral liver plasma membrane shows little variation among preparations. Further, DPH anisotropy plotted as a function of temperature yields a straight line (r = 0.99) which indicates that there is no lipid phase change in these membranes from 4 degrees to 37 degrees C. The membrane preparation does contain substantial phospholipase A2 activity. The function of this enzyme is, in part, to modify membrane lipid composition and fluidity in response to temperature variations; therefore, this finding suggests that in situ lipid metabolizing enzymes may play a central role in the adaptation of skate basolateral liver plasma membranes to changes in the ambient temperature.  相似文献   

4.
Oat and rye plants were treated with either tetcyclacis (an experimental plant growth regulator), nuarimol (a fungicide) or gamma-ketotriazole (an experimental herbicide). These treatments reduced shoot growth and changed the lipid composition of the shoot plasma membranes. In oat, both tetcyclacis and nuarimol treatments increased plasma membrane cholesterol and increased the phosphatidylethanolamine/phosphatidylcholine (PE/PC) ratio, whereas gamma-ketotriazole treatment reduced cholesterol and the PE/PC ratio. In rye, all treatments reduced the PE/PC ratio. Generally, the sterol/phospholipid ratio was less in oat than in rye but the cholesterol/phospholipid ratio was greater. With all treatments in oat and rye, increases were observed in unsaturation of the phospholipid acyl chains. The fluidity of membranes was measured by steady-state fluorescence polarisation of the probe diphenylhexatriene; oat membranes were more fluid than rye. Membrane fluidity was greater in plasma membranes from plants treated with the xenobiotics than the controls. The results are discussed in the context of the effect of plasma membrane lipid composition on membrane fluidity, and it is concluded that there appears to be no overall simple relationship between membrane lipid composition and fluidity that holds for all treatments in both species.  相似文献   

5.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

6.
S Shivaji 《FEBS letters》1986,196(2):255-258
The binding of seminalplasmin, a protein secreted by the accessory sex glands of bull, to the plasma and outer acrosomal membrane of bovine spermatozoa was studied using three different fluorescent probes. 8-Anilino-1-naphthalenesulfonate fluorescence, pyrene excimer fluorescence and diphenylhexatriene fluorescence polarisation studies indicate that seminalplasmin binds to the spermatozoal membranes, and leads to an increase in the fluidity of both the plasma and the acrosomal membranes. Calcium was found to have no influence on the interaction of seminalplasmin with the spermatozoal membranes. These results suggest that protein(s) present in the seminal plasma could interact with spermatozoal membranes and increase their fluidity.  相似文献   

7.
Plasma membranes from liver of control rats or from chemical-induced hepatoma were prepared. The basal activity of adenylate cyclase was increased significantly in the rat plasma membranes of DEN-induced hepatoma compared to normal tissue. The glucagon-induced response on the cellular effector systems via guanine nucleotide-binding regulatory proteins (G proteins) was inhibited in hepatoma plasma membranes. These findings suggest that in hepatoma membranes, unlike normal hepatic membranes, the response to hormonal stimuli through regulatory G proteins results in a loss of response to glucagon, as well as to GTP plus glucagon or to GTPγS. However, the activating effects of forskolin, which catalyses the formation of cyclic AMP from ATP acting on the catalytic subunit, were to some extent retained. The methyltransferase-I behaved in the opposite direction to the adenylate cyclase, showing a decreased activity in hepatoma plasma membranes compared to control membranes. In contrast, the activity of the ecto-5′-nucleotidase was significantly increased in hepatoma. These enzymatic changes have been found to influence the membrane fluidity and to be responsible for the ultrastructural modifications of hepatoma plasma membranes which are induced by chemical carcinogens.  相似文献   

8.
The in vitro effects of plant sterols were investigated with regard to their uptake and membrane lipid fluidity in human keratinocytes. Among the different media tested to transport sterols (liposomes, micelles and organic solvents), the best results in terms of incorporation and viability were obtained by the use of the organic solvents dimethylsulfoxide and ethanol. After 48 h incubation exogenous sterol can account for about 30% of the total cell sterol content. The total sterol amount in plasma membranes increased 2-fold after incubation with cholesterol, whereas it was not altered when phytosterols were incorporated. The incorporation of cholesterol, sitosterol and stigmasterol led to an increase in the percent of unsaturated fatty acid C18:1 in the plasma membrane. The effect of this uptake on membrane fluidity was studied by means of fluorescence polarisation using DPH and TMA-DPH as fluorescent probes. Whereas cholesterol and sitosterol had no significant effect on the DPH fluorescence anisotropy (rs), the presence of stigmasterol induced a 12% decrease of rs reflecting an increase in membrane fluidity. We can conclude from this study that in the presence of sitosterol, the mean fluidity of the membrane is regulated whereas stigmasterol triggers a looseness of molecular packing of phospholipids acyl chains, in accordance with previous results obtained on purely lipid model membranes.  相似文献   

9.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

10.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

11.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

12.
Plasma membranes isolated from the fast-growing, maximal-deviation, Morris hepatoma 3924A exhibit remarkable changes in lipid composition, lipid peroxidation and to some extent in the physical state with respect to rat liver plasmalemmas. A correlation appears to exit between the lower phospholipid: protein ratio, higher cholesterol: phospholipid ratio, lower rate of lipid peroxidation and decrease in fluidity in tumor plasma membranes.  相似文献   

13.
Xylooligosaccharides (XOS) are non-digestible carbohydrate prebiotics that beneficially affect the host by selective stimulation of specific bacteria in the gastro-intestinal tract. The impact of XOS on gastrointestinal microflora and blood lipids is well known but the exact mechanism of action on liver membranes is still unclear. The organization of membrane lipids in domains is known to be important for the proper functioning of various receptors and mechanisms triggering cell signaling. In this study the influence of XOS-enriched diet on the lipid bilayer structure of rat liver plasma membrane was investigated. XOS intake caused a slight decrease of the fluidity of lipid extracts from liver plasma membranes compared to the controls. This observation was based on the increased generalized polarization (GP) and blue shifted emission spectra of Laurdan. The elevated amount of membrane sphingomyelin may be one possible reason for the reported effects. The micron-scale phase separation of the lipid extracts was also investigated by fluorescence microscopy. A different temperature of phase separation and domain pattern was observed in plasma membrane lipid extracts from XOS-fed animals. We presume that it could be assigned to the altered lipid composition of the membrane bilayer, in particular to the changes in the sphingomyelin/cholesterol ratio. All observed alterations are discussed in the light of the impact of XOS on human health and physiology.  相似文献   

14.
Maintaining proper membrane phase and fluidity is important for preserving membrane structure and function, and by altering membrane lipid composition many organisms can adapt to changing environmental conditions. We compared the phospholipid and cholesterol composition of liver and brain plasma membranes in the freeze-tolerant wood frog, Rana sylvatica, from southern Ohio and Interior Alaska during summer, fall, and winter. We also compared membranes from winter-acclimatized frogs from Ohio that were either acclimated to 0, 4, or 10 °C, or frozen to ?2.5 °C and sampled before or after thawing. Lipids were extracted from isolated membranes, separated by one-dimensional thin-layer chromatography, and analyzed via densitometry. Liver membranes underwent seasonal changes in phospholipid composition and lipid ratios, including a winter increase in phosphatidylethanolamine, which serves to increase fluidity. However, whereas Ohioan frogs decreased phosphatidylcholine and increased sphingomyelin, Alaskan frogs only decreased phosphatidylserine, indicating that these phenotypes use different adaptive strategies to meet the functional needs of their membranes. Liver membranes showed no seasonal variation in cholesterol abundance, though membranes from Alaskan frogs contained relatively less cholesterol, consistent with the need for greater fluidity in a colder environment. No lipid changed seasonally in brain membranes in either population. In the thermal acclimation experiment, cold exposure induced an increase in phosphatidylethanolamine in liver membranes and a decrease in cholesterol in brain membranes. No changes occurred during freezing and thawing in membranes from either organ. Wood frogs use tissue-specific membrane adaptation of phospholipids and cholesterol to respond to changing environmental factors, particularly temperature, though not with freezing.  相似文献   

15.
Treatment of liver plasma membranes with phospholipase A2 or high doses of concanavalin A enhances the activity of Mg2+ATPase assayed at temperatures greater than 30 degrees C. The effects of the two treatments are not additive. Both the removal of phospholipids and binding of the lectin increase the degree of polarization of fluorescence of the lipid-soluble fluorophores, diphenylhexatriene and beta-parinaric acid, suggesting that decreased lipid fluidity may activate Mg2+-ATPase. In fact modification of lipid fluidity by reconstitution of phospholipase-treated membranes with phosphatidylcholines of defined fatty acid composition or by addition of cis-vaccenic acid showed a strong inverse correlation between Mg2+ATPase activity and lipid fluidity as monitored by fluorescence polarization. However, despite the ability of concanavalin A to nonspecifically order membrane lipid, its effect on Mg2+ATPase is apparently not mediated in this manner because other enzyme-activating lectins such as Ricinus communis agglutinin and wheat germ agglutinin are without effect on lipid fluidity. The facts that lectins of lower valency than tetravalent native concanavalin A such as divalent succinyl concanavalin A are far less effective in activating the enzyme and that paraformaldehyde treatment also activates suggests that cross-linking of membrane proteins is responsible. Hence, the diminution in activity of this membrane enzyme due to the disordering effect of heat in the physiological temperature range can be counteracted by isothermally increasing the order of either membrane lipid or protein.  相似文献   

16.
A significant variation in the membrane fluidity (as assessed by DPH-fluorescence polarisation) and membrane lipid bilayer composition is noticed in the subcellular membranes of the gill epithelial cells of Oreochromis niloticus due to exposure of the fish to 1% saline water for 1 month. Also, a 70% enhanced activity of Na(+)-K(+)-ATPase in plasma membranes and a 2.5-fold increase of glucose-6-phosphate dehydrogenase in microsomal membranes are recorded in the treated fish. The changed membrane structure and fluidity along with the changed enzymatic activity of Na(+)-K(+)-ATPase help the influx the Na(+) rather than the efflux of K(+) through the gill epithelial cells during salinity adaptation.  相似文献   

17.
Membrane fluidity and cancer metastasis   总被引:1,自引:0,他引:1  
The membrane fluidity of murine B16 melanoma and L5178 lymphoma variants is examined in relation to their metastatic potential. A higher lateral mobility of membrane proteins in metastasis is indicated by lectin receptor-mediated agglutination studies, but these do not constitute incontrovertible evidence that higher fluidity might be relevant in the metastatic process. The membranes of tumour cells with higher metastatic potential have a lower cholesterol/phospholipid ratio but greater unsaturated phospholipid content. This is partly supported by partition characteristics of metastatic variants in aqueous two-polymer phases. Steady-state fluorescence polarisation, which measures lipid order and the degree of rotational motion of lipids, does not suggest marked differences in bulk 'fluidity' of metastatic variants. Transbilayer fluidity differences have been described and these may be of some significance in the control of activity of membrane-associated enzymes and other membrane properties. The plasma membrane is a mosaic of domains possessing different degrees of microviscosity and this mosaicism may be relevant in the context of metastatic dissemination of tumours.  相似文献   

18.
This study examined the effects of different concentrations of centrophenoxine on physical properties of synaptic plasma membranes and liver microsomes using electron spin resonance procedures. Membranes of different age groups of mice were labeled with the 5-doxyl stearic acid spin-label and membrane fluidity determined in the presence and absence of different concentrations of centrophenoxine. Centrophenoxine had a direct effect on membranes as shown by a significant increase in membrane fluidity. This effect was greatest in liver microsomes as compared to synaptic plasma membranes. Age differences were not observed in centrophenoxine-induced fluidization. Effects of centrophenoxine in vivo may be due in part to the drug acting directly on the physical properties of the membrane lipid environment.  相似文献   

19.
Calcium ion decreases the lipid fluidity of isolated rat hepatocyte plasma membranes by modulating the activity of membrane enzymes which alter the lipid composition. To explore the mechanism of the effect of the cation, eight fluorophores were used to assess lipid fluidity via estimations of either steady-state fluorescence polarization or excimer fluorescence intensity. The results demonstrate that the reduction in fluidity occurs in the hydrophobic interior of the bilayer and that both the dynamic and static (lipid order) components of fluidity are affected by treatment with calcium. Analysis of the membrane lipids demonstrates that calcium treatment decreases the arachidonic acid content of the polar lipid fraction and, thereby, reduces the double-bond index of the fatty acids. This change in composition, which is expected to reduce the lipid fluidity, may result from activation by calcium of the endogenous hepatocyte plasma membrane phospholipase A2.  相似文献   

20.
The lipid composition and fluidity of brush-border membranes prepared from rat proximal and distal colonocytes were determined. Fluidity, as assessed by steady-state fluorescence polarization techniques using the fluorophores 1,6-diphenyl-1,3,5-hexatriene, DL-2(9-anthroyl)stearic acid and DL-12(9-anthroyl)stearic acid, was decreased in distal compared to proximal plasma membranes. This pattern was similar to that previously described for both antipodal plasma membranes in rat enterocytes of the small intestine. The decrease in fluidity of the distal as compared to the proximal membranes resulted from an increase in cholesterol content, cholesterol/phospholipid molar ratio and degree of saturation of the fatty acid residues in the distal membranes. The specific activities of total alkaline phosphatase and cysteine-sensitive alkaline phosphatase, enzymes previously shown to be functionally dependent on the physical state of the colonic brush-border membrane's lipid, were also significantly lower in distal as compared to proximal clonic plasma membranes. These studies, therefore, demonstrate that differences in the lipid fluidity, lipid composition and certain enzymatic activities exist in brush-border membranes prepared from rat proximal and distal colonocytes. The regional variation in rat colonic luminal membrane lipid fluidity and composition may, at least partially, be responsible for differences in these enzymatic activities as well as in sodium and water absorption along the length of this organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号