首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The “mitochondrial cascade hypothesis” could explain many of the biochemical, genetic and pathological features of sporadic Alzheimer’s disease (AD). Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress and accumulation of amyloid β, which in a vicious cycle reinforces mtDNA damage and oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, and despite the cognitive impairment frequently reported in patients with mtDNA mutation, no causative mutation in the mtDNA have been linked to AD. Indeed, results of studies on the role of mtDNA polymorphisms or haplogroups in AD are controversial. In this minireview, we summarize the actual knowledge about the involvement of mtDNA in AD pathology.  相似文献   

2.
The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.  相似文献   

3.
4.
The evidence for the role of mitochondria in Alzheimer’s disease (AD) has been well investigated, based on the amyloid hypothesis and its relation to the mitochondrial dysfunction due to oxidative stress. However, contrasting reports describe an unclear picture on the relationship between AD and mitochondrial DNA (mtDNA) variations. Therefore, we analyzed complete mtDNA sequences from 153 AD patients and 129 normal control subjects to determine if inherited mtDNA polymorphisms or rare variants, or both contribute to the etiology of late-onset AD. The results reported herein indicate that inherited mtDNA common polymorphisms could not be the single major causes of AD but that some rare variants in the protein-coding-region may have protective effects for high-risk populations with the APOE e4 allele. Furthermore, our results support the idea that the np956–965 poly-c insertion and 856A>G variant might be a riskfactor for AD.  相似文献   

5.
Alzheimer's disease (AD) brain reveals high rates of oxygen consumption and oxidative stress, altered antioxidant defences, increased oxidized polyunsaturated fatty acids, and elevated transition metal ions. Mitochondrial dysfunction in AD is perhaps relevant to these observations, as such may contribute to neurodegenerative cell death through the formation of reactive oxygen species (ROS) and the release of molecules that initiate programmed cell death pathways. In this study, we analyzed the effects of beta-amyloid peptide (Abeta) on human teratocarcinoma (NT2) cells expressing endogenous mitochondrial DNA (mtDNA), mtDNA from AD subjects (AD cybrids), and mtDNA from age-matched control subjects (control cybrids). In addition to finding reduced cytochrome oxidase activity, elevated ROS, and reduced ATP levels in the AD cybrids, when these cell lines were exposed to Abeta 1-40 we observed excessive mitochondrial membrane potential depolarization, increased cytoplasmic cytochrome c, and elevated caspase-3 activity. When exposed to Abeta, events associated with programmed cell death are activated in AD NT2 cybrids to a greater extent than they are in control cybrids or the native NT2 cell line, suggesting a role for mtDNA-derived mitochondrial dysfunction in AD degeneration.  相似文献   

6.
7.
Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known. Here we show that subtoxic, 1 microM Abeta(1-42) exposure does not change the mitochondrial shape of living cells, as visualized upon the uptake of the non-potentiometric fluorescent probe Mitotracker Green and enhanced yellow fluorescent protein (EYFP)-tagged cytochrome c oxidase expression. Immunolocalization of oxidative adducts 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanine and 8-hydroxyguanosine demonstrates that one-micromolar concentration of Abeta(1-42) is also not sufficient to elicit dramatic qualitative changes in the RNA/DNA oxidative products. However, in comparison with controls, semi-quantitative analysis of the overall mitochondrial mass by integrated fluorescence intensity reveals an ongoing down-regulation in mitochondrial biosynthesis or, conversely, an enhanced autophagic demise of Abeta treated cells. Furthermore, a significant increase of the full-length mitochondrial DNA (mtDNA) from Abeta-treated versus control cells is found, as measured by long range polymerase chain reaction (PCR). Such up-regulation is accompanied by extensive fragmentation of the unamplified mtDNA, probably due to the detrimental effect of Abeta. We interpret these results as a sequence of compensatory responses induced by mtDNA damage, which are devoted to repression of oxidative burst. In conclusion, our findings suggest that early therapeutic interventions aimed at prevention of mitochondrial oxidative damage may delay AD progression and help in treating AD patients.  相似文献   

8.
Electron transport chain (ETC) dysfunction may arise from mitochondrial genetic, nuclear genetic, or toxic etiologies. Cytoplasmic hybrid (cybrid) systems can help distinguish between these possibilities by facilitating expression of suspect mitochondrial DNA (mtDNA) within a nuclear and environmentally controlled context. Perpetuation of ETC dysfunction in cybrids is consistent with an mtDNA pathogenesis while defect correction is not. We previously used cybrids to screen sporadic Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis patients for mtDNA mutation with positive results. To further address the fidelity of these experiments, we created and characterized cybrids expressing mtDNA from persons with Huntington's disease (HD), an autosomal dominant, nuclear DNA-determined disorder in which mitochondrial ETC functioning is abnormal. On ETC, oxidative stress, and calcium homeostasis assays HD cybrid lines were indistinguishable from control cybrid lines. These data support the use of the cybrid technique for mtDNA mutation screening in candidate diseases.  相似文献   

9.
10.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NAD‐dependent histone deacetylases involved in aging and longevity. The objective of this study was to investigate the relationship between SIRT3 and mitochondrial function and neuronal activity in AD. SIRT3 mRNA and protein levels were significantly decreased in AD cerebral cortex, and Ac‐p53 K320 was significantly increased in AD mitochondria. SIRT3 prevented p53‐induced mitochondrial dysfunction and neuronal damage in a deacetylase activity‐dependent manner. Notably, mitochondrially targeted p53 (mito‐p53) directly reduced mitochondria DNA‐encoded ND2 and ND4 gene expression resulting in increased reactive oxygen species (ROS) and reduced mitochondrial oxygen consumption. ND2 and ND4 gene expressions were significantly decreased in patients with AD. p53‐ChIP analysis verified the presence of p53‐binding elements in the human mitochondrial genome and increased p53 occupancy of mitochondrial DNA in AD. SIRT3 overexpression restored the expression of ND2 and ND4 and improved mitochondrial oxygen consumption by repressing mito‐p53 activity. Our results indicate that SIRT3 dysfunction leads to p53‐mediated mitochondrial and neuronal damage in AD. Therapeutic modulation of SIRT3 activity may ameliorate mitochondrial pathology and neurodegeneration in AD.  相似文献   

11.
The levels of mitochondrial DNA 4977 bp deletion (mtDNA4977) and mitochondrial DNA 8'-hydroxy-2'-deoxyguanosine (OH8dG) were determined in the same samples from two brain areas of healthy subjects and Alzheimer's disease (AD) patients. A positive correlation between the age-related increases of mtDNA4977 and of OH8dG levels was found in the brain of healthy individuals. On the contrary, in both brain areas of AD patients, mtDNA4977 levels were very low in the presence of high OH8dG amounts. These results might be explained assuming that the increase of OH8dG above a threshold level, as in AD patients, implies consequences for mtDNA replication and neuronal cell survival.  相似文献   

12.
Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD.  相似文献   

13.
Mitochondrial dysfunction is an early pathological feature of Alzheimer’s disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1K38A), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.  相似文献   

14.
Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder of unknown etiology. We hypothesized that mitochondrial DNA (mtDNA) aberration could occur in this disease and contribute to its pathogenesis. To address this we created transmitochondrial cytoplasmic hybrid (cybrid) cell lines expressing mitochondrial genes from persons with PSP. The presence of cybrid mtDNA aberration was screened for by biochemical assay of mitochondrial gene products. Relative to a control cybrid set, complex I activity was reduced in PSP cybrid lines (p<0.005). Antioxidant enzyme activities were elevated in PSP cybrid lines. These data suggest that mtDNA aberration occurs in PSP, causes electron transport chain pathology, and can produce oxidative stress. Further study of mitochondrial dysfunction in PSP may yield insights into why neurodegeneration occurs in this disease.  相似文献   

15.
The incidence and prevalence of Alzheimer's disease (AD) and Parkinson's disease (PD) are increasing as the population ages. Both disorders have been associated with oxidative stress and mitochondrial dysfunction, and it has been proposed that mutations in the mitochondrial genome have a key role in neurodegeneration in AD and PD patients. Two recent publications propose that heteroplasmic mtDNA mutations are involved in AD and PD. However, when these new studies are considered in relation to the sum of previous evidence, the role of mtDNA mutations in the development of either AD or PD still remains to be established.  相似文献   

16.
Many forms of neurodegeneration are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage, however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are primary events in the delayed onset observed in Huntington's disease (HD). We hypothesize that an age-dependent increase in mtDNA damage contributes to mitochondrial dysfunction in HD. Two HD mouse models were studied, the 3-nitropropionic acid (3-NPA) chemically induced model and the HD transgenic mice of the R6/2 strain containing 115-150 CAG repeats in the huntingtin gene. The mitochondrial toxin 3-NPA inhibits complex II of the electron transport system and causes neurodegeneration that resembles HD in the striatum of human and experimental animals. We measured nuclear and mtDNA damage by quantitative PCR (QPCR) in striatum of 5- and 24-month-old untreated and 3-NPA treated C57BL/6 mice. Aging caused an increase in damage in both nuclear and mitochondrial genomes. 3-NPA induced 4-6 more damage in mtDNA than nuclear DNA in 5-month-old mice, and this damage was repaired by 48h in the mtDNA. In 24-month-old mice 3NPA caused equal amounts of nuclear and mitochondrial damage and this damage persistent in both genomes for 48h. QPCR analysis showed a progressive increase in the levels of mtDNA damage in the striatum and cerebral cortex of 7-12-week-old R6/2 mice. Striatum exhibited eight-fold more damage to the mtDNA compared with a nuclear gene. These data suggest that mtDNA damage is an early biomarker for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may contribute to the pathogenesis observed in HD.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron death. In order to address the question of a putative role of mitochondrial dysfunction in the pathogenesis of ALS, we studied the mitochondrial DNA (mtDNA) and mitochondrial respiratory chain enzyme activities in spinal cords of ALS patients and in control subjects without neuropathologic abnormalities. Using a "double PCR and digestion" technique to estimate the levels of randomly distributed point mutations in two small regions of the mtDNA, we found significantly higher levels of mutant mtDNA in the spinal cord of ALS patients compared to controls. No large-scale rearrangements were found, but the amount of mtDNA, measured by Southern blot, was significantly lower in the ALS samples. This reduction correlated well with a decrease of citrate synthase (CS) activity, a mitochondrial marker, as were the activities of respiratory chain complexes I + III, II + III, and IV, suggesting a loss of mitochondria in ALS spinal cords.  相似文献   

18.
Mitochondrial DNA maintenance and bioenergetics   总被引:8,自引:0,他引:8  
Oxidative phosphorylation requires assembly of the protein products of both mitochondrial and of nuclear genomes into functional respiratory complexes. Cellular respiration can be compromised when mitochondrial DNA (mtDNA) sequences are corrupted. Oxidative damage resulting from reactive oxygen species (ROS) produced during respiration is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction. Here, we review mechanisms of mitochondrial ROS production, mtDNA damage and its relationship to mitochondrial dysfunction. We focus particular attention on the roles of mtDNA repair enzymes and processes by which the integrity of the mitochondrial genome is maintained and dysfunction prevented.  相似文献   

19.
Oxidative phosphorylation requires assembly of the protein products of both mitochondrial and of nuclear genomes into functional respiratory complexes. Cellular respiration can be compromised when mitochondrial DNA (mtDNA) sequences are corrupted. Oxidative damage resulting from reactive oxygen species (ROS) produced during respiration is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction. Here, we review mechanisms of mitochondrial ROS production, mtDNA damage and its relationship to mitochondrial dysfunction. We focus particular attention on the roles of mtDNA repair enzymes and processes by which the integrity of the mitochondrial genome is maintained and dysfunction prevented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号