首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catabolism of plasmenylcholine in the guinea pig heart.   总被引:3,自引:3,他引:0       下载免费PDF全文
G Arthur  L Page  T Mock    P C Choy 《The Biochemical journal》1986,236(2):475-480
The hydrolysis of the alkenyl bonds of plasmenylcholine and plasmenylethanolamine by plasmalogenase, followed by hydrolysis of the resultant lysophospholipid by lysophospholipase, has been postulated as the major pathway for the catabolism of these plasmalogens. However, the postulation was based solely on the presence of plasmalogenase activity towards plasmenylethanolamine and plasmenylcholine in the brain. In this study we have demonstrated the absence of plasmalogenase activity for plasmenylcholine in the guinea pig heart under a wide range of experimental conditions. Plasmenylcholine was hydrolysed by phospolipase A2 activities in cardiac microsomal, mitochondrial and cytosolic fractions. Phospholipase A2 activities in these fractions had an alkaline pH optimum and were enhanced by Ca2+. The enzymes also displayed high specificity for plasmenylcholine with linoleoyl or oleoyl at the C-2 position. Lysoplasmalogenase activity for lysoplasmenycholine was also detected and characterized in the microsomal and mitochondrial fractions. Since the cardiac plasmalogenase is only active towards plasmenylethanolamine but not plasmenylcholine, the catabolism of these two plasmalogens must be different from each other. We postulate that the major pathway for the catabolism of plasmenycholine involves the hydrolysis of the C-2 fatty acid by phospholipase A2, and hydrolysis of the vinyl ether group of the resultant lysoplasmenylcholine by lysoplasmalogenase.  相似文献   

2.
The alk-1-enyl bond in plasmenylethanolamine is formed from plasmanylethanolamine by the action of a microsomal cytochrome b5-dependent desaturase. However, the origin of the alk-1-enyl linkage in plasmenylcholine, a significant subclass of phospholipids in heart tissues of certain animal species, is not yet known. We have used neonatal rat myocytes as a model to study the biosynthesis of plasmenylcholine in the present studies since they have a phospholipid composition and subclasses of 1,2-diradyl-sn-glycero-3-phosphocholine (-GPC) similar to those of neonatal rat hearts. When equal concentrations of [3H]hexadecyllyso-GPC or [3H]hexadecyllyso-sn-glycero-3-phosphoethanolamine (-GPE) are incubated under identical conditions with myocytes for 4, 12, and 24 h, the rate of plasmenylcholine formation is faster from [3H]hexadecyllyso-GPE than from [3H]hexadecyllyso-GPC. Also, when [3H]alkyllyso-GPC and alkyllyso-[N-methyl-14C]GPC are incubated with rat myocytes for various times up to 24 h, the 3H/14C ratio in the diacyl-GPC plus alkylacyl-GPC fraction and alkyllyso-GPC remains relatively constant (3H/14C = 2.7), whereas the 3H/14C of plasmenylcholine increases from 0.3 at 2 h to 1.7 after 24 h. Finally, when the rat myocytes are prelabeled with [3H]alkyllyso-GPE for 4 h and then reincubated with either [14C]choline or [14C]methionine for 1 or 3 h, both [14C]choline and [14C]methionine are incorporated into plasmenylcholine, except the 14C/3H is much higher (5- to 15-fold) in the [14C]choline-labeled plasmenylcholine than in the [14C]methionine-labeled plasmenylcholine. Collectively, our data show plasmenylcholine is not directly derived from plasmanylcholine or lysoplasmanylcholine, but instead is formed from plasmenylethanolamine via some type of hydrolytic exchange mechanism, and the contribution of plasmenylethanolamine through methylation to the synthesis of plasmenylcholine is of limited capacity.  相似文献   

3.
Methods for the efficient use of limiting amounts of fatty acid probes in the synthesis of individual molecular species of plasmenylcholine have been developed. Plasmenylcholine molecular species were synthesized through acylation of homogeneous 1-O-(Z)-hexadec-1'-enyl-sn-glycero-3-phosphocholine utilizing fatty acid anhydrides generated in situ from combined pools of reactant and recycled fatty acids by repeated addition of small amounts (10 mol%) of N,N'-dicyclohexylcarbodiimide. The efficient generation of reactive anhydrides was accomplished through minimizing irreversible formation of N-acyl urea adducts by maintaining a persistent molar excess of fatty acid (with respect to carbodiimide) during the entire reaction time course. The synthesis of multiple different sn-2 labeled plasmenylcholine probes for utilization in fluorescence, ESR, or 2H NMR spectroscopy as well as isotopically labeled plasmenylcholines for metabolic studies has been achieved in good yield (40-50% of theoretical yield based on fatty acid) by these methods. Rapid and effective purification methods utilizing high-performance liquid chromatography were developed for both large- and small-scale purifications of individual reaction mixtures which collectively resulted in the isolation of homogeneous plasmenylcholine molecular species in high yield from limiting amounts of fatty acid probes.  相似文献   

4.
Thrombin stimulation of rabbit ventricular myocytes activates a membrane-associated, Ca(2+)-independent phospholipase A(2) (PLA(2)) capable of hydrolyzing plasmenylcholine (choline plasmalogen), plasmanylcholine (alkylacyl choline phospholipid), and phosphatidylcholine substrates. To identify the endogenous phospholipid substrates, we quantified the effects of thrombin stimulation on diradyl phospholipid mass and arachidonic acid and lysophospholipid production. Thrombin stimulation resulted in a selective decrease in arachidonylated plasmenylcholine, with no change in arachidonylated phosphatidylcholine. The decrease in arachidonylated plasmenylcholine was accompanied by an increase in plasmenylcholine species containing linoleic and linolenic acids at the sn-2 position. A decrease in arachidonylated plasmenylethanolamine was also observed after thrombin stimulation, with no concomitant change in arachidonylated phosphatidylethanolamine. Thrombin stimulation resulted in the selective production of lysoplasmenylcholine, with no increase in lysophosphatidylcholine content. There was no evidence for significant acetylation of lysophospholipids to form platelet-activating factor. Arachidonic acid released after thrombin stimulation was rapidly oxidized to prostacyclin. Thus thrombin-stimulated Ca(2+)-independent PLA(2) selectively hydrolyzes arachidonylated plasmalogen substrates, resulting in production of lysoplasmalogens and prostacyclin as the principal bioactive products.  相似文献   

5.
The aims of this study were to (i) elucidate the biosynthetic pathways for the formation of plasmenylcholine in the mammalian heart and (ii) investigate whether the control of choline glycerophospholipid production is different in hearts with high plasmenylcholine content. Guinea pig hearts were used throughout this study, since 34% of the cardiac choline glycerophospholipids in this species is present in the plasmenylcholine form. By perfusion of the guinea pig heart in the Langendorff mode with labeled choline, we demonstrated that the majority of plasmenylcholine in the heart was synthesized via the CDP-choline pathway. The ability of the heart to form plasmenylcholine from CDP-choline and 1-alkenyl-2-acylglycerol was also shown. We postulate that 1-alkenyl-2-acylglycerol in the guinea pig heart might originate from the hydrolysis of plasmenylethanolamine. In mammalian liver and other tissues, the CDP-choline pathway is the major pathway for phosphatidylcholine biosynthesis and the rate-limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase. The results obtained from the present study support this supposition. In addition, evidence was obtained indicating that phosphorylation of choline by choline kinase in the CDP-choline pathway may also be rate limiting. Although the involvement of choline kinase as a rate-limiting enzyme in the CDP-choline pathway has been shown in a number of cell cultures, the rate-limiting role of this enzyme in intact mammalian organs has not been previously reported. The rationale for the presence of more than one rate-limiting step in the CDP-choline pathway in the guinea pig heart remains undefined.  相似文献   

6.
Recently we have identified a novel choline and ethanolamine specific phospholipase C in myocardium and have hypothesized that this enzyme is responsible for the introduction of the vinyl ether linkage into plasmenylcholine by shuttling 1-O-alk-1'-enyl-2-acyl-sn-glycerol fragments from plasmenylethanolamine to plasmenylcholine (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303). The present study demonstrates that rabbit myocardium contains endogenous 1-O-hexadec-1'-enyl-2-acyl-sn-glycerol (0.46 micrograms/g) and that these moieties are selectively utilized by myocardial choline phosphotransferase to generate plasmenylcholine. The apparent Michaelis constant of CDP-choline for microsomal choline phosphotransferase was 9 microM with a corresponding Vmax of 18 pmol/mg.min utilizing endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol as substrate. The flux of CDP-choline into plasmenylcholine or phosphatidylcholine was similar despite the fact that the mass of endogenous 1,2-diacyl-sn-glycerol was over 20 times the mass of endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol. Augmentation of endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol content by pretreatment of myocardial microsomes with exogenous phospholipase C resulted in an 8-fold increase in plasmenylcholine synthesis. The results suggest that myocardial plasmenylcholine biosynthesis occurs by polar head group remodeling utilizing endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol as a synthetic intermediate. Flux through this pathway is likely regulated by physiologic increments in endogenous 1-O-alk-1'-enyl-2-acyl-sn-glycerol content and cytosolic CDP-choline concentration.  相似文献   

7.
Plasmenylethanolamines represent the major endogenous phospholipid storage depot of arachidonic acid in many mammalian cells. To elucidate the biochemical mechanisms contributing to the high plasmalogen content and arachidonic acid enrichment present in myocardial ethanolamine glycerophospholipids, the substrate specificity of rabbit myocardial ethanolamine phosphotransferase (EPT) was quantified utilizing multiple molecular species of each subclass of diradyl glycerol substrate. Myocardial EPT demonstrated over a 16-fold selectivity for 1-O-alk-1'-enyl-2-acyl-sn-glycerol (AAG) compared to 1,2-diacyl-sn-glycerol (DAG) substrate utilizing individual molecular species of each subclass dispersed in Tween 20. The selective utilization of AAG by EPT was substantiated utilizing two independent assay systems which employed either the presentation of substrate to enzyme as a substitutional impurity in Triton X-100 mixed micelles or the obligatory utilization of endogenously generated diradyl glycerol substrates. Although rabbit myocardial microsomes contained over a 20-fold molar excess of endogenous DAG to AAG mass, incubation of rabbit myocardial microsomes with CDP-ethanolamine resulted in the highly selective synthesis of plasmenylethanolamines which were predominantly comprised of molecular species containing arachidonic acid at the sn-2 position (greater than 75%). Endogenous AAG molecular species in rabbit myocardial microsomes were similarly enriched in arachidonic acid, and the distribution of AAG molecular species closely paralleled the distribution of plasmenylethanolamine (but not plasmenylcholine) molecular species. Thus, the subclass and molecular species distribution of the ethanolamine glycerophospholipids synthesized by rabbit myocardial EPT reflects independent contributions from the subclass selectivity of EPT for AAG substrate in conjunction with the enrichment of arachidonic acid in microsomal AAG molecular species.  相似文献   

8.
The molecular dynamics of binary dispersions of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol were quantified by electron spin resonance (ESR) and deuterium magnetic resonance (2H NMR) spectroscopy. The order parameter of both 5-doxylstearate (5DS) and 16-doxylstearate (16DS) was larger in vesicles comprised of plasmenylcholine in comparison to phosphatidylcholine at all temperatures studied (e.g., S = 0.592 vs. 0.487 for 5DS and 0.107 vs. 0.099 for 16DS, respectively, at 38 degrees C). Similarly, the order parameter of plasmenylcholine vesicles was larger than that of phosphatidylcholine vesicles utilizing either spin-labeled phosphatidylcholine or spin-labeled plasmenylcholine as probes of molecular motion. The ratio of the low-field to the midfield peak height in ESR spectra of 16-doxylstearate containing moieties (i.e., spin-labeled plasmenylcholine and phosphatidylcholine) was lower in plasmenylcholine vesicles (0.93 +/- 0.01) in comparison to phosphatidylcholine vesicles (1.03 +/- 0.01). 2H NMR spectroscopy demonstrated that the order parameter of plasmenylcholine was greater than that of phosphatidylcholine for one of the two diastereotopic deuterons located at the C-2 carbon of the sn-2 fatty acyl chain. The spin-lattice relaxation times for deuterated plasmenylcholine and phosphatidylcholine in binary mixtures containing 0-50 mol % cholesterol varied nonmonotonically as a function of cholesterol concentration and were different for each phospholipid subclass. Taken together, the results indicate that the vinyl ether linkage in the proximal portion of the sn-1 aliphatic chain of plasmenylcholine has substantial effects on the molecular dynamics of membrane bilayers both locally and at sites spatially distant from the covalent alteration.  相似文献   

9.
Recently, we identified a novel calcium-independent, plasmalogen-selective phospholipase A2 activity in canine myocardial cytosol which represents the major measurable phospholipase A2 activity in myocardial homogenates (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303). We now report the 154,000-fold purification of this phospholipase A2 to homogeneity through utilization of sequential anion exchange, chromatofocusing, affinity, Mono Q, and hydroxylapatite chromatographies. The purified enzyme had a molecular mass of 40 kDa, possessed a specific activity of 227 mumol/mg min, had a pH optimum of 6.4, and catalyzed the regiospecific cleavage of the sn-2 fatty acid from diradyl glycerophospholipids. The purified polypeptide was remarkable for its ability to selectively hydrolyze plasmenylcholine in homogeneous vesicles (subclass rank order: plasmenylcholine greater than alkyl-ether choline glycerophospholipid greater than phosphatidylcholine) as well as in mixed bilayers comprised of equimolar plasmenylcholine/phosphatidylcholine. Purified myocardial phospholipase A2 also possessed selectivity for hydrolysis of phospholipids containing arachidonic acid at the sn-2 position in comparison to oleic or palmitic acid. Taken together, these results constitute the first purification of a calcium-independent phospholipase with absolute regiospecificity for cleavage of the sn-2 acyl linkage in diradyl glycerophospholipids and demonstrate that myocardial phospholipase A2 has kinetic characteristics which are anticipated to result in the selective hydrolysis of sarcolemmal phospholipids during myocardial ischemia.  相似文献   

10.
We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 ± 0.1 vs. 5.3 ± 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 ± 1.0 vs. 12.0 ± 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 ± 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 ± 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 ± 0.3 vs. 1.1 ± 0.1%) and increased production of lysoplasmenylcholine (1.4 ± 0.2 vs. 0.6 ± 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 ± 0.6 to 0.5 ± 0.1%) and lysoplasmenylcholine production (2.0 ± 0.1 to 0.2 ± 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production. lysophospholipids; cell signaling; phospholipid metabolism; arachidonic acid  相似文献   

11.
X L Han  R W Gross 《Biochemistry》1990,29(20):4992-4996
The conformation of plasmenylcholine near the hydrophobic-hydrophilic interface in membrane bilayers was deduced by determination of critical internuclear distances utilizing truncated driven nuclear Overhauser enhancement. These experiments demonstrated that the beta-vinyl ether proton in plasmenylcholine was in close spatial proximity and nearly equidistant (approximately 3 A) to both the alpha- and beta-methylene protons of the sn-2 aliphatic chain. In contrast, the distances between the alpha-vinyl ether proton and the alpha- and beta-methylene protons of the sn-2 aliphatic chain were greater than or equal to 5 A. Furthermore, the distance between the N-CH3 protons in the polar head group and the methylene protons of the glycerol backbone in plasmenylcholine vesicles is larger than that present in phosphatidylcholine vesicles. Although the proximal portion of the sn-2 acyl chain in phosphatidylcholine is bent, conformational analysis utilizing these distance constraints demonstrated that the carbon atoms which comprise the proximal portion of the sn-2 aliphatic chain in plasmenylcholine are nearly coplanar, in register, and parallel to the sn-1 aliphatic chain. Taken together, these observations indicate that modest covalent alterations in the proximal portion of the sn-1 aliphatic chain in choline glycerophospholipids result in substantial changes in the molecular conformation and packing of hydrated phospholipid bilayers.  相似文献   

12.
In a rat model of acute neuroinflammation, produced by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide (LPS), we measured brain activities and protein levels of three phospholipases A2 (PLA2) and of cyclo-oxygenase-1 and -2, and quantified other aspects of brain phospholipid and fatty acid metabolism. The 6-day intracerebral ventricular infusion increased lectin-reactive microglia in the cerebral ventricles, pia mater, and the glial membrane of the cortex and resulted in morphological changes of glial fibrillary acidic protein (GFAP)-positive astrocytes in the cortical mantel and areas surrounding the cerebral ventricles. LPS infusion increased brain cytosolic and secretory PLA2 activities by 71% and 47%, respectively, as well as the brain concentrations of non-esterified linoleic and arachidonic acids, and of prostaglandins E2 and D2. LPS infusion also increased rates of incorporation and turnover of arachidonic acid in phosphatidylethanolamine, plasmenylethanolamine, phosphatidylcholine, and plasmenylcholine by 1.5- to 2.8-fold, without changing these rates in phosphatidylserine or phosphatidylinositol. These observations suggest that selective alterations in brain arachidonic acid metabolism involving cytosolic and secretory PLA2 contribute to early pathology in neuroinflammation.  相似文献   

13.
The plasmalogen sn-1 vinyl ether bond is targeted by hypochlorous acid (HOCl) produced by activated phagocytes. In the present study, the attack of the plasmalogen sn-1 vinyl ether bond by HOCl is shown to be preferred compared to the attack of double bonds present in the sn-2 position aliphatic chain (sn-2 alkenes) of both plasmenylcholine and phosphatidylcholine. Lysophosphatidylcholine (LPC) is a product from the initial HOCl attack of plasmenylcholine and the sn-2 alkene bonds present in this LPC product are secondary targets of HOCl leading to the production of LPC-chlorohydrins (ClOH). The aliphatic ClOH was demonstrated in both the positive and negative ion mode using collisionally-activated dissociation (CAD) of the molecular ion of LPC-ClOH. Furthermore, HOCl treatment of endothelial cells led to the preferential attack of plasmalogens in comparison to that of diacyl choline glycerophospholipids. Taken together, plasmenylcholine is oxidized preferentially over phosphatidylcholine and leads to the production of LPC-ClOH.  相似文献   

14.
Ethanolamine phosphotransferase (EPT) is a key enzyme responsible for the synthesis of ethanolamine glycerophospholipids. Plasmenylethanolamine is a predominant molecular subclass of ethanolamine glycerophospholipids in the heart. The present study was designed to identify the selective use of 1-O-alk-1'-enyl-2-acyl-sn-glycerol as a substrate for EPT as a mechanism responsible for the predominance of plasmenylethanolamine in the rabbit heart. EPT activity in rabbit myocardial membranes using 1,2-diacyl-sn-glycerol as substrate is activated by Mn2+, inhibited by dithiobisnitrobenzoic acid (DTNB) and is unaffected by Ca2+. In contrast, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol as substrate is inhibited by Mn2+ and Ca2+, but is activated by DTNB. Additionally, ethanolamine phosphotransferase activity using 1-O-alk-1'-enyl-2-acyl-sn-glycerol substrate was more sensitive to thermal denaturation compared with that of 1,2-diacyl-sn-glycerol. Taken together, these results suggest that separate ethanolamine phosphotransferase activities are present in heart membranes that are responsible for the synthesis of phosphatidylethanolamine and plasmenylethanolamine.  相似文献   

15.
In several tissues and cell lines, serine utilized for phosphatidylserine (PS) synthesis is an eventual precursor of the base moiety of ethanolamine phosphoglycerides (PE). We investigated the biosynthesis and decarboxylation of PS in cultured C6 glioma cells, with particular attention to 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmenylethanolamine) biosynthesis. Incorporation of [3H]serine into PS reached a maximum within 4-8 h, and label in nonplasmenylethanolamine phosphoglyceride (NP-PE) and plasmenylethanolamine was maximal by 12-24 h and 48 h, respectively. After 8 h, label in PS decreased even though 40-60% of initial label remained in the culture medium. Serial additions of fresh [3H]serine restored PS synthesis to higher levels of labeled PS accumulation followed by a subsequent decrease in 4-8 h. High performance liquid chromatographic analyses confirmed that medium serine was depleted by 8 h, and thereafter metabolites, including acetate and formate, accounted for radioactivity in the medium. The rapid but transient appearance of labeled glycine and ATP inside the cells indicated conversion of serine by hydroxymethyltransferase. 78-85% of label from serine was in headgroup of PS or of PE formed by decarboxylation. A precursor-product relationship was suggested for label from [3H]serine appearing in the headgroup of diacyl, alkylacyl, and alkenylacyl subclasses of PE. By 48 h, a constant specific activity, ratio of approximately 1:1 was reached between plasmenylethanolamine and NP-PE, similar to the molar distribution of these lipids. In contrast, equilibrium was not achieved in cells incubated with [1,2-14C]ethanolamine; plasmenylethanolamine had 2-fold greater specific activity than labeled NP-PE by 72-96 h. These observations indicate that in cultured glioma cells 1) serine serves as a precursor of the head group of PS and of both plasmenyl and non-plasmenyl species of PE; 2) exchange of headgroup between NP-PE and plasmenylethanolamine may involve different donor pools of PE depending on whether the headgroup originates with exogenous serine or ethanolamine; 3) serine is rapidly converted to other metabolites, which limits exogenous serine as a direct phospholipid precursor.  相似文献   

16.
Spin-labeled aqueous dispersions of total phospholipid extracts from whole brains of hibernating hamsters and rats chronically consuming ethanol were compared with dispersions from control animals. Order parameter values and approximate rotational correlation times for the nitroxide spin labels indicated that ethanol consumption results in an adaptive decrease in bilayer membrane fluidity, while hibernation produces increases in fluidity. Since it has been proposed that changes in plasmenylethanolamine such as those seen with hibernation play a role in the homeoviscous adaptation of brain membranes, electron spin resonance studies using aqueous phospholipid dispersions containing equimolar mixtures of rat brain phosphatidylethanolamine and phosphatidylcholine, or synthetic dioleylphosphatidylcholine and dioleylphosphatidylethanolamine, and brain plasmenylethanolamine were performed. The molar amount of plasmenylethanolamine was varied within the ethanolamineglycerophospholipid fraction of each dispersion. Order parameter values of spin labels in liposomes containing brain phosphatidylcholine and phosphatidylethanolamine increased in parallel with increases in plasmenylethanolamine concentrations, indicating that fluidity was decreasing. Liposomes composed of synthetic dioleyl phospholipids exhibited biphasic changes in order parameter (S) values as plasmenylethanolamine replaced the diacyl form. Below 30% (mol%) plasmenylethanolamine, S values decreased, while above 30%, S values were seen to increase; indicating an initial fluidization, followed by a decrease in fluidity.  相似文献   

17.
A plasmalogen, plasmenylethanolamine, is required for in vitro growth of strains of Eubacterium which convert cholesterol to coprostanol. Plasmenylethanolamine was isolated from calf brain by selective saponification of lipid fractions separated by thin-layer or column chromatography. Cholesterol-containing thioglycolate broth plus purified plasmenylethanolamine or its 2-lyso derivative supported growth of Eubacterium ATCC 21408 and a cholesterol-reducing Eubacterium isolated from baboon feces. Plasmenylethanolamine obtained from commercial sources also supported growth of these organisms, but none of a number of other pure lipids would support growth. Metabolism of the alkenyl ether group of plasmenylethanolamine occurred during growth.  相似文献   

18.
Recent studies have implicated accelerated sarcolemmal phospholipid catabolism as a mediator of the lethal sequelae of atherosclerotic heart disease. We have demonstrated that plasmalogens are the predominant phospholipid constituents of canine myocardium and that plasmalogens are hydrolyzed by a novel calcium independent plasmalogen selective phospholipase A2. Since the activities of phospholipases are modulated by the molecular dynamics and interfacial characteristics of their phospholipid substrates, we compared the molecular dynamics of plasmenylcholine and phosphatidylcholine vesicles by electron spin resonance spectroscopy and deuterium magnetic resonance spectroscopy. Plasmenylcholine vesicles have separate and distinct molecular dynamics in comparisons to their phosphatidylcholine counterparts as ascertained by substantial decreases in the angular fluctuations and motional velocities of probes attached to their sn-2 aliphatic constituents. Furthermore, since free radical oxidation of myocardial lipid constituents occurs during myocardial ischemia and reperfusion, we demonstrated that 1O2 mediated oxidation of plasmenylcholine resulted in the generation of several products which have chromatographic characteristics and molecular masses corresponding to 2-acyl lysophosphatide derivatives. Taken together, these studies underscore the biologic significance of the predominance of sarcolemmal plasmalogens present in mammalian myocardium and suggest that their catabolism by plasmalogen selective phospholipases and/or oxidative processes may contribute to the lethal sequelae of myocardial ischemia.  相似文献   

19.
The rates of synthesis, turnover, and half-lives were determined for brain microsomal ether phospholipids in the awake adult unanesthetized rat. A multicompartmental kinetic model of phospholipid metabolism, based on known pathways of synthesis, was applied to data generated by a 5 min intravenous infusion of [1,1-(3)H]hexadecanol. At 2 h post-infusion, 29%, 33%, and 31% of the total labeled brain phospholipid was found in the 1-O-alkyl-2-acyl-sn-glycero-3-phosphate, ethanolamine, and choline ether phospholipid fractions, respectively. Autoradiography and membrane fractionation showed that 3% of the net incorporated radiotracer was in myelin at 2 h, compared to 97% in gray matter microsomal and synaptosomal fractions. Based on evidence that ether phospholipid synthesis occurs in the microsomal membrane fraction, we calculated the synthesis rates of plasmanylcholine, plasmanylethanolamine, plasmenylethanolamine, and plasmenylcholine equal to 1.2, 9.3, 27.6, and 21.5 nmol. g(-1). min(-1), respectively. Therefore, 8% of the total brain ether phospholipids have half-lives of about 36.5, 26.7, 23.1, and 15.1 min, respectively. Furthermore, we clearly demonstrate that there are at least two pools of ether phospholipids in the adult rat brain. One is the static myelin pool with a slow rate of tracer incorporation and the other is a dynamic pool found in gray matter.The short half-lives of microsomal ether phospholipids and the rapid transfer to synaptosomes are consistent with evidence of the marked involvement of these lipids in brain signal transduction and synaptic function.  相似文献   

20.
Substantial amounts of phospholipase A2 activity were detected in bovine brain cytosol. The major phospholipase A2 activity was present in the precipitate at 40% saturation with solid ammonium sulfate. After the desaltate of the precipitate was loaded onto an Ultrogel AcA 54 gel filtration column, almost all the activity eluted in the void volume when chromatographed without 1 M KCl. However, when buffer with 1 M KCl was used as the eluent, two active peaks were obtained. One peak (peak I) eluted in the void volume, and the other (peak II) eluted with an apparent molecular mass of 39 kDa as compared with standards. The former was active with diacylglycero-3-phosphoethanolamine, whereas the latter was active with both diacylglycero-3-phosphoethanolamine and 1-alk-1'-enyl-2-acylglycero-3-phosphoethanolamine (plasmenylethanolamine). The apparent molecular mass of peak I was estimated to be 110 kDa as compared with standards on an Ultrogel AcA 34 gel filtration column. Both peaks were purified further with a hydrophobic chromatography column (AffiGel 10 coupled with plasmenylethanolamine) and then by high-resolution liquid chromatography on an MA7Q column. The phospholipase A2 obtained from peak II migrated as one main band with a 40-kDa molecular mass and two minor bands with 14- and 25-kDa molecular masses. Phospholipase A2 obtained from peak I eluted as a single peak on high-resolution liquid chromatography but contained two bands with apparent molecular masses of 100 and 110 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号