首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ku proteins play an important role in DNA double-strand break (DSB) repair, chromosome maintenance, and growth regulation. To understand the fundamental characteristics of Ku proteins, we examined the electrophoretic mobility and expression of hamster Ku70 and Ku80 and determined the chromosome locations of their genes. The electrophoretic mobility of hamster Ku proteins are different from that of human Ku proteins. No significant changes in the quantity of Ku proteins were observed in CHO-K1 cells treated with 10 Gy of ionizing radiation, suggesting that both proteins are expressed constitutively in amounts adequate to repair DNA DSBs. The chromosome locations of the Ku genes were determined by direct R-banding fluorescence in situ hybridization. The Ku70 gene was localized to Syrian hamster chromosome 4qa4.1--> qa4.2 and Chinese hamster chromosome 2p3.1, and the Ku80 gene was localized to Syrian hamster chromosome 4qb5--> qb6.1 and Chinese hamster chromosome 2p3.5-->p3.6. These results provide clues to the biological functions of Ku, as well as useful information for constructing comparative chromosome maps between hamsters and other mammalian species, including human, mouse, and rat.  相似文献   

2.
By fluorescence in situ hybridization (FISH) using mouse probes, we assigned homologues for cathepsin E (Ctse), protocadherin 10 (Pcdh10, alias OL-protocadherin, Ol-pc), protocadherin 13 (Pcdh13, alias protocadherin 2c, Pcdh2c), neuroglycan C (Cspg5) and myosin X (Myo10) genes to rat chromosomes (RNO) 13q13, 2q24-->q25, 18p12-->p11, 8q32.1 and 2q22.1-->q22.3, respectively. Similarly, homologues for mouse Ctse, Pcdh13, Cspg5 and Myo10 genes and homologues for rat Smad2 (Madh2) and Smad4 (Madh4) genes were assigned to Chinese hamster chromosomes (CGR) 5q28, 2q17, 4q26, 2p29-->p27, 2q112-->q113 and 2q112-->q113, respectively. The chromosome assignments of homologues of Ctse and Cspg5 reinforced well-known homologous relationships among mouse chromosome (MMU) 1, RNO 13 and CGR 5q, and among MMU 9, RNO 8 and CGR 4q, respectively. The chromosome locations of homologues for Madh2, Madh4 and Pcdh13 genes suggested that inversion events were involved in chromosomal rearrangements in the differentiation of MMU 18 and RNO 18, whereas most of MMU 18 is conserved as a continuous segment in CGR 2q. Furthermore, the mapping result of Myo10 and homologues suggested an orthologous segment of MMU 15, RNO 2 and CGR 2.  相似文献   

3.
Gab1 and Gab2 are members of the Gab family which act as adapters for transmitting various signals in response to stimuli through cytokine and growth factor receptors, and T- and B-cell antigen receptors. We determined chromosome locations of the two genes in human, mouse and rat by fluorescence in situ hybridization. The Gab1 gene was localized to chromosome 4q31.1 in human, 8C3 in mouse and 19q11.1--> q11.2 in rat, and the Gab2 gene was located on chromosome 11q13.4-->q13.5 in human, 7E2 in mouse and 1q33.2-->q33.3 in rat. All human, mouse and rat Gab1 and Gab2 genes were localized to chromosome regions where conserved homology has been identified among the three species.  相似文献   

4.
Using Chinese hamster/mouse somatic cell hybrids segregating hamster chromosomes, we assigned 15 enzyme genes to six different Chinese hamster autosomes. Of the 15 loci, three genes, HK1, PEPC, and SORD, were newly assigned to chromosomes 1, 5, and 6, respectively, while ENO1, PGD, and PGM1 were assigned to the long arm of chromosome 2, in the segment 2q113----qter. The locations of the following loci were confirmed: ESD, NP, and PEPB on chromosome 1, ME1 and MPI on chromosome 4, AK1 on chromosome 6, and GPI and PEPD on chromosome 9. Comparative mapping of Chinese hamster and laboratory mouse chromosomes revealed conservation of syntenic groups and extensive banding homology between the Chinese hamster and mouse chromosomes on which homologous enzyme markers have been mapped.  相似文献   

5.
Chromosomal locations of theAtm(ataxia–telangiectasia (AT)-mutated) andAcat1(mitochondrial acetoacetyl-CoA thiolase) genes in mouse, rat, and Syrian hamster were determined by direct R-banding FISH. Both genes were colocalized to the C-D band of mouse chromosome 9, the proximal end of q24.1 of rat chromosome 8, and qa4–qa5 of Syrian hamster chromosome 12. The regions in the mouse and rat were homologous to human chromosome 11q. Fine genetic linkage mapping of the mouse AT region was performed using the interspecific backcross mice.Atm, Acat1,andNpat,which is a new gene isolated from the AT region, and 12 flanking microsatellite DNA markers were examined. No recombinations were found among theAtm, Npat, Acat1,andD9Mit6loci, and these loci were mapped 2.0 cM distal toD9Mit99and 1.3 cM proximal toD9Mit102.Comparison of the linkage map of mouse chromosome 9 (MMU9) and that of human chromosome 11 (HSA11) indicates that there is a chromosomal rearrangement due to an inversion betweenEts1andAtm–Npat–Acat1and that the inversion of MMU9 originated from the chromosomal breakage at the boundary betweenGria4andAtm–Npat–Acat1on HSA11. This type of inversion appeared to be conserved in the three rodent species, mouse, rat, and Syrian hamster, using additional comparative mapping data with theRckgene.  相似文献   

6.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity.  相似文献   

7.
8.
The Syrian cardiomyopathic hamster (BIO14.6), that developsboth muscular dystrophy and progressive cardiomyopathy, is widelyused as an animal model of autosomal recessive cardiomyopathymimicking human hypertrophic cardiomyopathy, and five geneshave been proposed as strong candidates for the cause of cardiomyopathy.We recently mapped the cardiomyopathy locus of the hamster tothe centromeric region of chromosome 9qa2.1-b1 by constructionof a genetic linkage map of the Syrian hamster. Thus, we analyzedthe loci of the five candidate genes, tropomyosin, cardiactroponin T, adhalin, calpain 3 and cardiac myosin binding protein-C,by the FISH method, and found that these genes were mapped onthe distal portion of chromosome 12qa5 and 4pa2 and the proximalportion of chromosomes 9qb7, 1qc1.1 and 1qb3, respectively.These results provide strong evidence that the five candidategenes previously proposed are not related to the hamster cardiomyopathy.  相似文献   

9.
We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designatedHAS1, HAS2,andHAS3in humans andHas1, Has2,andHas3in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to theStreptococcus pyogenesHA synthase, HasA. Furthermore, expression of any oneHASgene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the threeHASgenes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes.HAS1was localized to the human chromosome 19q13.3–q13.4 boundary andHas1to mouse Chr 17.HAS2was localized to human chromosome 8q24.12 andHas2to mouse Chr 15.HAS3was localized to human chromosome 16q22.1 andHas3to mouse Chr 8. The map position forHAS1reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17.HAS2mapped outside the predicted critical region delineated for the Langer–Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome.  相似文献   

10.
Serine proteases HtrA1 and HtrA2 are involved in cellular stress response and development of several diseases, including cancer. Our aim was to examine the involvement of the HtrA proteins in acute oxidative stress response induced in hamster kidney by estrogen treatment, and in nephrocarcinogenesis caused by prolonged estrogenization of male Syrian hamster. We used semi-quantitative RT-PCR to estimate the HtrA1 and HtrA2 mRNA levels in kidney tissues, and Western blotting to monitor the amount of the HtrA proteins. Within the first five hours following estrogen administration both HtrA1 mRNA and the protein levels were increased significantly. No changes in the expression of HtrA2 were observed. This indicates that HtrA1 may be involved in the response against oxidative stress induced by estrogen treatment in hamster kidney. During prolonged estrogenization, a significant reduction of the HtrA1 mRNA and protein levels was observed after 6 months of estradiol treatment, while the expression of HtrA2 was significantly elevated starting from the third month. This suggests an involvement of the HtrA proteins in estrogen-induced nephrocarcinogenesis in hamster. Using fluorescence in situ hybridization we localized the HtrA1 gene at the qb3-4 region of Syrian hamster chromosome 2, the region known to undergo a nonrandom deletion upon prolonged estrogenization. It is possible that the reduced level of HtrA1 expression is due to this chromosomal aberration. A full-length cDNA sequence of the hamster HtrA1 gene was obtained. It codes for a 50 kDa protein which has 98 and 96% identity with mouse and human counterparts, respectively.  相似文献   

11.
Careful analysis of G-band patterns in various rodent families allows identification of homology and thus accurate prediction of gene map positions. However, conclusions based on the synteny of genes without a careful study of chromosome evolution and G-band homology can be misleading. We tested these generalizations by means of G-band analysis and in situ hybridization with three genes in Chinese hamster (Cricetulus griseus, CGR) chromosomes. The location of the adenosine deaminase gene, previously mapped by somatic cell hybrid panels, was confirmed and further sublocalized on CGR 6q1. Although transferrin and uridine monophosphate synthetase are localized to adjacent bands on human chromosome 3 (3q21 and 3q13, respectively), we report that these genes are widely separated on CGR 4q2 and 4p2, respectively.  相似文献   

12.
We have cloned a Chinese hamster chromosome-specific repeated sequence (SatCH5). This satellite is composed of a 33-bp unit organized in two extended tandem arrays. It is localized at the centromere and at the short-arm subtelomere of chromosome 5. Altogether, SatCH5 covers about 1-2 Mb per diploid genome and is not present in other species, including the Syrian hamster and mouse. Since it is known in the Chinese hamster and numerous other vertebrate species that telomeric (TTAGGG)n repeats are localized at the centromeres of several chromosomes, we studied the localization of SatCH5 relative to (TTAGGG)n sequences. Using two-color fluorescence in situ hybridization on stretched chromosomes and on DNA fibers, we have shown that at the centromere of chromosome 5 SatCH5 and the (TTAGGG)n arrays are contiguous. SatCH5 is the first chromosome-specific repetitive sequence located at both the pericentromeric and subtelomeric regions of the same chromosome.  相似文献   

13.
K(+)-Cl(-) cotransporters (KCCs) constitute a branch of the cation-chloride cotransporter (CCC) family. To date, four KCC isoforms (KCC1-KCC4) have been identified and they all mediate obligatorily coupled, electroneutral transmembrane movement of K(+) and Cl(-) ions. KCC2 (gene symbol SLC12A5) is expressed exclusively in neurons within the central nervous system and abnormalities in its expression have been proposed to play a role in pathological conditions such as epilepsy and neuronal trauma. Here we have determined chromosome location of both the human and the mouse genes encoding KCC2, which may assist in future efforts to determine the contribution of KCC2 to inherited human disorders. We assigned human SLC12A5 to 20q12-->q13.1 and its murine homolog, Slc12a5, to 5G2-G3 by fluorescence in situ hybridization (FISH). These mapping data are contradictory to the previously reported human-mouse conserved synteny relationships disrupting an exceptionally well-conserved homology segment between human Chr 20 and mouse Chr 2. We hence suggest the first region of conserved homology between human Chr 20 and mouse Chr 5.  相似文献   

14.
Many eukaryotic cell surface proteins are anchored to the membrane with glycosylphosphatidylinositol (GPI) that is covalently linked to the carboxyl-terminus. A Saccharomyces cerevisiae gaa1 mutant is defective in posttranslational attachment of GPI to proteins. A recent report demonstrated that the GPAA1 gene encodes a component of a transamidase that mediates GPI-anchor attachment. Here, we report structures and chromosome loci of human and mouse GPAA1 genes. Both genes consist of twelve exons that span about 4 kb. Human and mouse GPAA1s are located at 8q24.3 and 15E, respectively. There is a human pseudo GPAA1 gene (GPAA1P1) that is located at 2q12-->q14. Introns 8 of human and mouse GPAA1s were minor class introns bearing AT at the 5' splice sites and AC and AT at the 3' splice sites, respectively. The 3' splice sites of corresponding introns of African green monkey, Chinese hamster, dog and rat were AC, AT, AT and AA, respectively. The mouse GPAA1 gene (Gpaa1) bearing AG at the 3' splice site prepared by site-directed mutagenesis was functional, indicating that any nucleotide is allowed at the 3' end of a minor class intron.  相似文献   

15.
Four homeobox genes that belong to the four homeobox gene clusters known in mammals have been regionally assigned to four distinct porcine chromosomes in conserved regions between human and pig. HOXA11, HOXB6, HOXC8, and HOXD4 genes were mapped by radioactive in situ hybridization to porcine Chromosomes (Chrs) 18q21-24 (with a secondary signal in 16q14-21), 12p11-12, 5p11-12, and 15q22-23 respectively. Besides, we have also revealed the presence of a porcine homeobox (pig Hbx24) which, although showing DNA sequence homology with a mouse gene of HOXB cluster, was located on porcine Chr 3 (3p14-13) outside the Hox clusters. To support the identity of the homeobox gene clusters analyzed and in the light of the high sequence similarity among homeobox genes, we also localized markers known to be mapped near each Hox cluster in human. In this way, four genes were also mapped in pig: GAPD (5q12-21), GAD1 (15q21-22), INHBA (18q24), and IGFBP3 (18q24). Mapping of HOXA11, INHBA, and IGFBP3 on pig Chr 18 constitutes the first assignments of genes on this small chromosome. These new localizations extend the information on the conservation of four human chromosomal regions in the pig genome. Received: 7 August 1995 / Accepted: 16 October 1995  相似文献   

16.
The retrotransposon-like elements of the intracisternal A-particle (IAP) sequences occur in about 900 copies per haploid hamster cell genome. By applying the fluorescent in situ hybridization (FISH) technique and four different, cloned segments of the IAP element as hybridization probes, these elements were found to be distributed in specific patterns over many of the 44 hamster chromosomes. The hybridization patterns were very similar regardless of whether all four probes or only the IAPI probe carrying the long terminal repeat (LTR) region were used. The IAP elements were found most abundantly, though not exclusively, on the short arms of at least 12 of the autosomes. Of the sex chromosomes, the shorter Y chromosome was stained on both arms, and the X chromosome on one arm by the IAP probes. Primary Syrian hamster cells, the established Syrian hamster cell line BHK21, and the adenovirus type 12 (Ad12)-transformed BHK21 cell line T637 yielded very similar results. In Chinese hamster ovary (CHO) or 3T3 mouse cells, signals could not be elicited by FISH using the Syrian hamster IAP probes. On Southern blots, the DNAs from these cell lines hybridized very weakly, if at all, to the IAP sequences. Thus, IAP sequences were retroposed after Syrian hamster and mouse or Syrian and Chinese hamsters had diverged in evolution.  相似文献   

17.
The human teratocarcinoma derived growth factor 1 (TDGF1) gene maps on chromosome (Chr) 3p21.3. One pseudogene (TDGF3) maps on Chr Xq21-->q22. We now report the nucleotide sequence and chromosome location of three additional TDGF pseudogenes. The three new sequences (TDGF2, TDGF4 and TDGF5) are truncated at the 5' end and have accumulated several point mutations, deletions and insertions. TDGF2, TDGF4 and TDGF6 map on Chrs 2q37, 6p25 and 3q22, respectively. Finally, Southern blot analysis of DNA from normal individuals shows a highly variable restriction pattern of the TDGF sequences.  相似文献   

18.
By means of somatic cell hybrids segregating rat chromosomes, we determined the chromosome localization of three rat genes of the Jun family: Jumb (Chr 19), Jun (=c-Jun) (Chr 5) and Jund (Chr 16). The Jun gene was also localized to the 5q31–33 region by fluorescence in situ hybridization. These rat gene assignments reveal two new homologies with mouse and human chromosomes, and provide a new example of synteny conserved in the human and a rodent species (the mouse), but split between the two rodent species.  相似文献   

19.
20.
The development and refinement of the rat genome map is a prerequisite for a continued qualified and fruitful use of this model system for the study of complex traits. In two distinct rat cancer models, recurrent amplification affecting the proximal region of rat Chr 4 was detected. To further characterize this region, we turned to the evolutionarily conserved chromosome segments in human Chr 7 and mouse Chrs 5 and 6 to identify functional and positional candidate genes. By means of single- and dual-color FISH on metaphase, prometaphase, and interphase chromatin, 15 genes in rat Chr 4q11-q23 (Cdk5, Hgf, Dmtf1, Abcb1, Cyp51, Cdk6, Tac1, Asns, Cav1, Met, Wnt2, Cftr, Smoh, Braf, Arhgef5) were mapped and aligned. In the course of this work, six cancer-related rat genes were isolated de novo and partly sequenced. Ten loci were also mapped by FISH in the mouse. The map provides the framework for a more detailed genetic characterization of individual tumor amplicons, but may also be valuable for the analysis of this region in other rat models of human complex disease. In addition, our data facilitate the analysis of events in mammalian chromosomal evolution affecting the region. In a comparison with human sequence data, we found that there is considerable conservation in this region both in gene order and in distances between genes. There is a single evolutionary breakpoint between rat and mouse and two between rat and human. Since our analysis shows that the three breaks all occurred in different positions, they must be independent of one another. The data tend to support the notion that the genomic configuration in rat Chr 4 is ancestral compared with that in humans and mice. Received: 7 June 2001 / Accepted: 7 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号