首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

2.
It was shown that exposure of rats to microwaves (800 MHz, 16 Hz modulation, 1-3 mW/cm2) decreased muscimol binding with synaptic membranes and reduced acetycholinesterase activity in the rat brain.  相似文献   

3.
The development of mariculture techniques for the raising of Aplysia californica in the laboratory from fertilized egg to reproductively mature adult permits the study of the developmental program whereby individual identified neurons in the abdominal ganglion acquire their specific adult properties. In this paper, we describe one of the early steps of this developmental program: the outgrowth of axonal processes by neurons of the abdominal ganglion. Axonal outgrowth is correlated with and may be triggered by the transient appearance of morphologically identifiable axosomatic contacts between the as yet undifferentiated cell body of specific neurons and an axon terminal from an incoming nerve fiber from the pleuroabdominal connective. The evidence that transient axosomatic contacts may signal neuronal differentiation is the following: (1) Axosomatic contacts have not been observed in the abdominal ganglion of adult animals, whereas they are commonly observed during the early stages of development. (2) Cells that receive axosomatic contacts are undifferentiated morphologically and do not as yet have axons. By contrast, cells with axons do not have soma contacts. (3) Individual cells that can be identified from animal to animal in the same and succeeding developmental stages receive axosomatic contacts on similar topographic postions of the cell body at one point in development. Axon outgrowth then occurs at the site of contact. Later in development, with further axon extension, these cells no longer have synaptic contacts on the cell body or axon.  相似文献   

4.
The effects of Mg-ATP, EGTA, EDTA and dicyclohexylcarbodiimide on the changes in the intensity of light scattering were studied in rat brain synaptic vesicles (SV) suspended in saccharose-buffer medium. Specific interactions between SV and isolated synaptic junctional complex were observed in the presence of Mg-ATP and calmodulin. An in vitro model of exocytosis is discussed.  相似文献   

5.
A study was made of the functional significance of GABA-ergic structures of the substantia nigra (SN) and the caudate nucleus (CN) and their role in food-procuring behaviour of cats. Analysis was made of behavioral and EEG-effects of local GABA and the GABA antagonist, picrotoxin, microinjections into the studied brain structures. Stimulation of the GABA-ergic structures of the SN produced a sedative effect and depression of the cat food-procuring behaviour. Effects of stimulation of the CN GABA-ergic structures were to a great degree reverse. The conclusion has been made that GABA-ergic structures of the SN and the CN play different roles in controlling the CN inhibitory influence upon food-procuring behaviour.  相似文献   

6.
It has been shown recently that prolonged blockade of neuronal firing activates several homeostatic mechanisms in neocortical networks, including alteration of glutamatergic and GABA-ergic synaptic transmission, and postsynaptic changes are involved in both cases. We studied whether such treatment also affects GABA-ergic synaptic transmission in hippocampal cell cultures. Using whole-cell voltage-clamp recording and local extracellular stimulation, we investigated evoked inhibitory postsynaptic currents (IPSC) in cultured rat hippocampal neurons grown with the sodium channel blocker tetrodotoxin (TTX) and under control conditions. We found that chronic TTX treatment significantly decreased the amplitude of evoked IPSC. This decrease was accompanied by an increase in the coefficient of variation of the above parameter, which is suggestive of a presynaptic mechanism. In contrast, no changes in the IPSC reversal potential or paired-pulse depression were observed in TTX-treated cultures. We conclude that alteration of GABA-ergic synaptic transmission contributes to the homeostatic plasticity in hippocampal neuronal networks, and this change is at least in part due to a presynaptic mechanism.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 432–437, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

7.
8.
9.
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.  相似文献   

10.
Nigrothalamic neurons were identified into thesubstantia nigra by their retrograde labelling with horseradish peroxidase. Axon terminals that contain glutamate (the excitatory transmitter) were revealed immunocytochemically with an immunogold electron microscopic technique. Ultrastructural parameters (the large and small diameters of axon terminals, area of their profiles, coefficient of form of profiles, large and small diameters of synaptic vesicles) were analyzed in all 240 synapses under study. Synaptic contacts localized on both nigrothalamic and unidentified neurons belonged to three morphologically specific groups. Synapses of the groups I and III, according to classification by Rinvik and Grofova, were characterized by a symmetric type of synaptic contact and contained polymorphic synaptic vesicles. Contacts in group-II synapses were asymmetric, and respective terminals contained round vesicles. Among the studied synapses, 65.8% were classified as group-I contacts, 25.0% belonged to group II, and 9.2% belonged to group III. Glutamate-positive axon terminals formed predominantly group-II synapses; such connections constituted 70% of this group's synapses. Sixty percent of glutamate-positive synapses were localized on the distal dendrites and 23% on the proximal dendrites, while 17% of such synapses were distributed on the somata of nigral neurons. Such a pattern of distribution of glutamate-positive synapses was observed on both nigrothalamic and unidentified nigral neurons. About 7% of glutamate-positive synapses were formed by very large axon terminals containing round synaptic vesicles; yet, the contacts of these terminals were of a symmetric type. Twenty percent of group-I synapses, i.e., synapses considered inhibitory connections, were found to manifest a weak immune reaction to glutamate.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 285–295, November–December, 1996.  相似文献   

11.
In acute experiment on 5-20 days kittens, the reactions were studied of neurones in the cortical somatosensory zone to stimulation of the dorsal raphe nucleus (DRN) and application of serotonin, ethanolamine-O-sulphate and bicucullin. The identity is established of the effect of DRN stimulation and serotonin application eliciting inhibition of the background activity and appearance of inhibitory phases in response to sensory stimulation, beginning from the 10-12th day after birth. A suggestion is made about serotoninergic regulation of GABA-ergic interneurones' in young animals. The dynamics of GABA-ergic brain system formation has been studied. Specific sensitivity of neocortical neurones to GABA increased to the end of the second week of life--the period when modulating serotoninergic influences appear.  相似文献   

12.
The quantitative ultrastructural study of changes in neocortical synaptic junctions were performed in undernourished adult and developing mice. The results obtained indicate that sectional area of the terminals occupied by synaptic vesicles; synaptic cleft width and postsynaptic membrane thickness significantly decrease in undernourished animals. Sectional area of the terminals significantly decreases in young undernourished mice and increases in adult ones. At the same time, the degree of spine apparatus destruction increases and the number of cisterns decreases in both groups of undernourished animals.  相似文献   

13.
The medial septal/diagonal band complex (MS/DB) is believed to play an important role in the generation and maintenance of the hippocampal theta rhythm, which has been implicated in the mnemonic and information-processing capacity of the brain. Although the physiological and morphological diversity of the septal neurons indicates their different functions, it is not known which cell type within the population contributes most critically to the theta rhythm. Here we review the chemical identity of different cell groups within the MS/DB complex, the anatomical connectivity between them, the electrophysiological properties of immunochemically-defined cell types, and their contribution to theta rhythmicity in the medial septum and the hippocampal theta rhythm. In order to better understand the mechanisms involved in rhythmic burst firing of the MS/DB neurons, a number of relevant theoretical models related to the generation/synchronization in neural networks are discussed.  相似文献   

14.
We have recently shown that disrupting the expression and post-synaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or over-expression of a dominant negative gephyrin-enhanced green fluorescent protein (EGFP) fusion protein, leads to decreased number of post-synaptic gephyrin and GABAA receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABAA receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by over-expression of the dominant negative gephyrin-enhanced green fluorescent protein fusion protein, leads to larger post-synaptic PSD-95 clusters and larger pre-synaptic glutamatergic terminals. On the other hand, over-expression of gephyrin leads to slightly smaller PSD-95 clusters and pre-synaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the post-synaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the post-synaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts.  相似文献   

15.
16.
17.
A review. The data concerning the structural changes that accompany long-term potentiation (LTP) of synaptic transmission are analyzed. A bulk of morphological studies is aimed at searching for quantitative and qualitative structural LTP signs and elucidating the involvement of cytoskeleton in their formation. The role of cytoskeletal protein actin in synaptic structural and functional modification is discussed. On the basis of experimental evidence obtained by the authors a proposal is made that actin is involved into the LTP not only as a contractile protein but as a cable which strengthen the electrotonic properties of the synapses.  相似文献   

18.
19.
Summary Synaptic ribbons in the pineal organ of the goldfish were examined electron microscopically with particular attention to their topography. These structures were formed of parallel membranes, which were poorly preserved with OsO4 fixation and could be extracted from thin sections with pronase indicating their proteinaceous nature. Synaptic ribbons were closely apposed to the plasma membrane bordering dendrites of ganglion cells, but were also related to processes of both photoreceptor and supportive cells. Their close proximity to invaginations of the plasma membrane and portions of the endoplasmic reticulum suggest that they are involved in the turnover of cytoplasmic membranes. Tubular and spherical organelles of unknown function are also described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号