首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effects of substrate composition and temperature on myceilal growth and sclerotium production in Grlfola umbellate (Pers.) Pilaet were Investigated In the present study. The Induction of sclerotla of G. umbellate was affected greatly by the type of medium, as well as the type of carbon source. Malt-extract agar was able to induce the production of sclerotia. The production of sclerotia was also observed when the carbon source in the GPC agar medium (glucose 20 g/L, peptone 6 g/L, corn steep liquor 10 g/L, and agar 15 g/L) was replaced with glycerol or mannitol. Altering the composition of the GPC medium with milk powder, thiamine hydrochlorlde, extract of Armlllarla mellea, active clay, dlatomite, kaolin, or arginlne did not induce the production of sclerotla. A temperature range of 18-25 ℃ was suitable for both mycellai growth and sclerotium formation. Glycerol significantly Induced slerotium formation on nutrient supplemented with sawdust substrates In bottle culture. 24S-Polyporusterone A and polyporusterone B were assayed In samples of natural and cultured sclerotla. Both natural and cultured sclerotla contained 24S- polyporusterone A and polyporusterone B.  相似文献   

3.
In this study,anti-spermatogenesis-associated 17 (Spatal7) polyclonal antibody was preparedby immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid se-quence 7-23 of the mouse Spata17 protein.Immunohistochemical analysis revealed that Spata17 proteinwas most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferoustubules of the adult testis.The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cellswas almost undetectable.In an experimental unilateral cryptorchidism model of an adult mouse,the expres-sion of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1,butgradually decreased from day 3 and was almost undetectable on day 17.Immunohistochemical analysisrevealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateralcryptorchidism model of the adult testis on postoperation day 8.Flow cytometry analysis showed that theexpression of Spatal7 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis.The effect increaseswith the increasing of the transfected dose of pcDNA3.1 (-)/Spata17.By Hoechst 33258 staining,a classicalway of identifying apoptotic cells,we further confirmed that the apoptosis was induced by expression ofSpata17 in transfected GC-1 cells.  相似文献   

4.
Erwinia carotovora subsp, carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'- Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S) monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.  相似文献   

5.
6.
Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis. Four members of PIN1 (designated as OsPINla-d), one gene paired with AtPIN2 (OsPIN2), three members of PIN5 (OsPIN5a-c), one gene paired with AtPIN8 (OsPIN8), and three monocot-specific PINs (OsPIN9, OsPINIOa, and b) were identified from the phylogenetic analysis. Tissue-specific expression patterns of nine PIN genes among them were investigated using RT-PCR and GUS reporter. The wide variations in the expression domain in different tissues of the PIN genes were observed. In general, PIN genes are up-regulated by exogenous auxin, while different responses of different PIN genes to other hormones were found.  相似文献   

7.
Virus-induced gene silencing (VIGS) has been shown to be effective for transient knockdown of gene expression in plants to analyze the effects of specific genes in development and stress-related responses. VlGS is well established for studies of model systems and crops within the Solanaceae, Brassicaceae, Leguminaceae, and Poaceae, but only recently has been applied to plants residing outside these families. Here, we have demonstrated that barley stripe mosaic virus (BSMV) can infect two species within the Zingiberaceae, and that BSMV-VIGS can be applied to specifically down-regulate phytoene desaturase in the culinary ginger Zingiber officinale. These results suggest that extension of BSMV-VlGS to monocots other than cereals has the potential for directed genetic analyses of many important temperate and tropical crop species.  相似文献   

8.
The supplementation with 50, 100 and 150μg/mL potassium chloride to the fifth instar larvae of the silkworm Bombyx mori on fat body glycogen, protein, total lipids and haemolymph protein and trehalose were analyzed. The fat body glycogen and protein and haemolymph protein were increased significantly in all the treated groups; whereas fat body total lipids increased only in 100 and 150μg/mL and haemolymph trehalose increased only in 150μg/mL potassium chloride-treated groups when compared with those of the corresponding parameters of the carrier controls.  相似文献   

9.
Molecular Evolution of the TAC1 Gene from Rice (Oryza sativa L.)   总被引:1,自引:0,他引:1  
Tiller angle is a key feature of the architecture of cultivated rice(Oryza sativa),since it determines planting density and influences rice yield.Our previous work identified Tiller Angle Control 1(TACl) as a major quantitative trait locus that controls rice tiller angle.To further clarify the evolutionary characterization of the TACl gene,we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice,including 43 accessions of O.rufipogon and five accessions of O.nivara.Only one single nucleotide polymorphism(SNP),a synonymous substitution,was detected in TACl coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TACl coding regions of wild rice accessions.These data indicate that little natural mutation and modification in the TACl coding region occurred within the cultivated rice and its progenitor during evolution.Nucleotide diversities in the TACl gene regions of O.sativa and O.rufipogon of 0.00116 and 0.00112,respectively, further indicate that TACl has been highly conserved during the course of rice domestication.A functional nucleotide polymorphism (FNP) of TACl was only found in the japonica rice group.A neutrality test revealed strong selection,especially in the 3’-flanking region of the TACl coding region containing the FNP in the japonica rice group.However,no selection occurred in the indica and wild-rice groups.A phylogenetic tree derived from TACl sequence analysis suggests that the indica and japonica subspecies arose independently during the domestication of wild rice.  相似文献   

10.
Tang W 《Cell research》2001,11(3):237-243
This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for beta-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expression including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers.  相似文献   

11.
12.
α-Glucosidase inhibitory activities were found in aqueous methanol extracts of the seeds of Momordica charantia and the fruit bodies of Grifola frondosa. An active principle against the enzyme prepared from rat small intestine acetone powders was isolated and characterized. The structure of the isolated compound was identified as D-(+)-trehalose by FDMS, 1H-, 13C-NMR, and [α]D measurements. The inhibitory activity of trehalose was compared with 1-deoxynojirimycin. Trehalose showed 45% inhibitory activity at the concentration of 2×10?3 M, but 1-deoxynojirimycin had 52% inhibitory activity at 1×10?7 M.  相似文献   

13.
海藻糖主要作用是作为生物体的结构组分、以及保护生物膜和保护蛋白质。在灰树花中 ,海藻糖在干重中所占比例最高可达到 1 5 %~ 1 7% ,说明灰树花合成海藻糖的能力很强。将灰树花海藻糖合成酶基因克隆 ,并在大肠杆菌表达系统里表达。表达量为 1 90mg L。通过活性测定 ,证明在大肠杆菌中表达的海藻糖合成酶具有酶活性 ,结合基因工程和酶工程方法 ,为合成海藻糖的研究提供了新的方向  相似文献   

14.
间种蔬菜对甘蔗地生态环境和甘蔗生长的影响   总被引:2,自引:0,他引:2  
甘蔗 (SaccharumofficinarumL .)是广西重要的经济作物 ,种植面积达 4 5 33× 10 6ha[1] ,甘蔗的前期生长比较缓慢 ,行间有比较大的可利用空间 ,到6月下旬~ 7月上旬才进入迅速生长期并逐渐封行。有研究表明 ,在甘蔗园间种玉米对甘蔗的生长发育和产量有一定的影响[5] ,而合理间种豆科作物 (黄豆和花生 )不仅不影响甘蔗的正常生长发育 ,还可以增加甘蔗的产量[4 ,6] 。但间种作物对甘蔗园生态环境的影响未见报道 ,我们于 1997- 1999年在桂西北开展了甘蔗园间种经济效益比较高的蔬菜作物的试验 ,并对间种甘蔗园生态环…  相似文献   

15.
  总被引:1,自引:0,他引:1  
Trehalose is a non-reducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances the tolerance of organisms to abiotic stress. In the present study, we report on the expression of the Grifolafrondosa Fr. trehalose synthase (TSase) gene for manipulating abiotic stress tolerance in tobacco (Nicotiana tabaccum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and was transferred into tobacco by Agrobacterium tumefaciens EHA105. Compared with non-transgenic plants, transgenic plants were able to accumulate high levels of products of trehalose, which were increased up to 2.126-2.556 mg/g FW, although levels were undetectable in non-transgenic plants. This level of trehalose in transgenic plants was 400-fold higher than that of transgenic tobacco plants cotransformed with Escherichia coli TPS and TPP on independent expression cassettes, twofold higher than that of transgenic rice plants transformed with a bifunctional fusion gene (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of E. coli, and 12-fold higher than that of transgenic tobacco plants transformed the yeast TPS1 gene.It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and had morphological alterations of their roots. Interestingly, our transgenic plants have obvious morphological changes, including thick and deep-coloured leaves, but show no growth inhibition; moreover, these morphological changes can restore to normal type in T2 progenies. Trehalose accumulation in 35S-35S:TSase plants resulted in increased tolerance to drought and salt, as shown by the results of tests on drought, salt tolerance, and drought physiological indices, such as water content in excised leaves, malondialdehyde content, chlorophyll a and b contents, and the activity of superoxide dismutase and peroxidase in excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought and salt.  相似文献   

16.
灰树花生长发育过程中的几种胞外酶活性变化   总被引:6,自引:0,他引:6  
胞外CMC酶、FP酶、HC酶活性高峰出现于子实体的成熟期;胞外淀粉酶活性在菌丝生长的前期阶段较高,以后逐渐下降;胞外漆酶活性在菌丝生长阶段一直较高,原基形成后逐渐下降;胞外过氧化物酶活性在菌丝生长阶段较高,子实体生长发育阶段明显下降,子实体成熟后消失.  相似文献   

17.
灰树花深层发酵培养基的研究   总被引:28,自引:2,他引:28       下载免费PDF全文
灰树花具有较宽广的碳源谱和氮源谱,其最佳碳源为马铃薯汁加葡萄糖,最佳氮源为麸皮。在有生长促进剂一板栗壳煮汁作用下,菌丝的增产率达140%。培养基的氮源种类和生长促进剂对菌丝生长具显著的影响,两者交互作用明显。培养基中碳源浓度过高不利于菌丝的生长。灰树花深层发酵的较佳培养基为QF培养基:葡萄糖609,KHPO lg,MgSO 0.5g,CaCl 0.1g板栗壳煮汁 150g,水1L。  相似文献   

18.
ACC(1-aminocyclopropane-1-carboxylic acid)合成酶是高等植物乙烯生物合成途径中的限速酶.根据已克隆的植物ACS(1-aminocyclopropane-1-carboxylic acid synthase)基因同源序列,设计简并引物,以甘蔗叶片总DNA为模板,通过PCR扩增,得到3条特异性强的扩增片段:Sc-ACS1为1 041 bp、Sc-ACS2为1 345 bp和Sc-ACS3为1 707 bp.将序列在GenBank核酸数据库进行同源性搜索,结果表明,3个片段均为ACS基因,推导编码的蛋白质序列分别包含326、242和310个氨基酸.其中,Sc-A CS1和Sc-ACS3同源性最高,核苷酸序列和蛋白质氨基酸序列分别有98%和96%同源,与禾本科植物玉米Zm ACS6、水稻OS-ACS2、毛竹等ACS基因家族也有很高的同源性,核苷酸序列同源性为88%-98%,蛋白质氨基酸序列同源性为73%-81%.甘蔗Sc-ACS2与水稻OS-ACS5在核苷酸和氨基酸序列上分别有91%和79%同源性,但与甘蔗Sc-ACS1和Sc-ACS3基因成员之间,氨基酸同源性分别只有45%和49%.系统进化分析表明,Sc-ACS1和Sc-ACS3基因与玉米Zm ACS6基因亲缘关系最近,而Sc-ACS2基因与水稻OS-ACS5基因亲缘关系最近.Southern杂交表明三基因在基因组中确实存在而且是多拷贝基因.三个片段已在GenBank数据库中注册,注册号分别为AY620985、AY620986和AY788919.  相似文献   

19.
甘蔗过氧化氢酶基因的电子克隆及生物信息学分析   总被引:1,自引:0,他引:1  
应用电子克隆技术,获得甘蔗中一个过氧化氢酶基因的cDNA序列全长,命名为S-CAT。该基因全长2160bp,包含一个1479bp的开放阅读框,编码492个氨基酸。通过PSORT工具,预测甘蔗S-CAT蛋白存在于过氧化物酶体中。同源比对分析显示,S-CAT基因编码的氨基酸序列与水稻、玉米、高粱、朝鲜碱茅、葡萄等植物中过氧化氢酶基因所编码的氨基酸序列高度同源,同源性分别为97%,97%,95%,91%和92%。研究结果为该基因的实验克隆奠定基础。  相似文献   

20.
灰树花深层发酵工艺条件的研究   总被引:13,自引:0,他引:13       下载免费PDF全文
灰树花摇瓶发酵较佳条件 :QF培养基 ,2 5℃ ,pH4 5,装量 60mL/50 0mL三角瓶 ,转速 1 0 0r/min。在种子培养基中加 0 4%的CMC ,可增加种子液菌丝的生长点 ,从而提高菌丝量。在 1 0L气升式发酵罐上放大试验 ,菌丝量对初糖的生物转化率在 2 4 %以上 ,对耗糖的转化率达 435%。菌丝体中多糖含量达 1 0 2 % ,发酵液中多糖含量为 1 38%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号