首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The inner membrane protein CcmC (CytA) of Pseudomonas fluorescens ATCC17400, which has homologues in several bacteria and plant mitochondria, is needed for the biogenesis of cytochrome c . A CcmC-deficient mutant is also compromised in the production and utilization of pyoverdine, the high-affinity fluorescent siderophore. A topological model for CcmC, based on the analysis of alkaline phosphatase fusions, predicts six membrane-spanning regions with three periplasmic loops. Site-directed mutagenesis was used in order to assess the importance of some periplasm-exposed residues, conserved in all CcmC homologues, for cytochrome c biogenesis, and pyoverdine production/utilization. Despite the conservation of the residues His-61, Val-62 and Pro-63 in the first periplasmic loop, and Leu-184, His-185 and Gln-186 in the third periplasmic loop, their simultaneous replacement with Ala only partially affected cytochrome c biogenesis and pyoverdine production/utilization. Simultaneous replacements of residues Trp-115 and Gly-116 in the second periplasmic loop substantially affected pyoverdine production/utilization but not cytochrome c production. An Ala substitution of Asp-127, in the second periplasmic loop, resulted in decreased production of cytochrome c , slower growth in conditions of anaerobiosis and reduced pyoverdine production. On the other hand, a mutation in Trp-126, also in the second periplasmic loop, totally suppressed the production of cytochrome c , whereas it had no effect on the production and utilization of pyoverdine. These results show a differential involvement of amino acid residues in periplasmic domains of CcmC in cytochrome c biogenesis and pyoverdine production/utilization.  相似文献   

2.
Fluorescent pseudomonads have evolved an efficient strategy of iron uptake based on the synthesis of the siderophore pyoverdine and its relevant outer membrane receptor. The possible implication of pyoverdine synthesis and uptake on the ecological competence of a model strain (Pseudomonas fluorescens C7R12) in soil habitats was evaluated using a pyoverdine minus mutant (PL1) obtained by random insertion of the transposon Tn5. The Tn5 flanking DNA was amplified by inverse PCR and sequenced. The nucleotide sequence was found to show a high level of identity with pvsB, a pyoverdine synthetase. As expected, the mutant PL1 was significantly more susceptible to iron starvation than the wild-type strain despite its ability to produce another unknown siderophore. As with the wild-type strain, the mutant PL1 was able to incorporate the wild-type pyoverdine and five pyoverdines of foreign origin, but at a significantly lower rate despite the similarity of the outer membrane protein patterns of the two strains. The survival kinetics of the wild-type and of the pyoverdine minus mutant, in bulk and rhizosphere soil, were compared under gnotobiotic and non-gnotobiotic conditions. In gnotobiotic model systems, both strains, when inoculated separately, showed a similar survival in soil and rhizosphere, suggesting that iron was not a limiting factor. In contrast, when inoculated together, the bacterial competition was favorable to the pyoverdine producer C7R12. The efficient fitness of PL1 in the presence of the indigenous microflora, even when coinoculated with C7R12, is assumed to be related to its ability to uptake heterologous pyoverdines. Altogether, these results suggest that pyoverdine-mediated iron uptake is involved in the ecological competence of the strain P. fluorescens C7R12.  相似文献   

3.
In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942.  相似文献   

4.
A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469.  相似文献   

5.
The structural gene (appA) for the periplasmic acid phosphatase (optimum pH 2.5) of Escherichia coli was cloned into a plasmid by using a combination of in vivo and in vitro techniques. The position and orientation of the appA gene within the cloned DNA fragment were identified by using fusions to the alkaline phosphatase gene (phoA) generated by Tn5 IS50L::phoA (TnphoA) insertions. For TnphoA-generated hybrid proteins to have high enzymatic activity, it appears that the phoA gene must be fused to a target gene coding for a signal which promotes protein export. The approach used to identify the appA gene thus appears to provide a simple general means of selectively identifying genes encoding membrane and secreted proteins.  相似文献   

6.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of (59)Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

7.
C Vargas  G Wu  A E Davies    J A Downie 《Journal of bacteriology》1994,176(13):4117-4123
A Tn5-induced mutant of Rhizobium leguminosarum bv. viciae could not form nitrogen-fixing nodules on pea or vetch because of a lesion in electron transport to oxygen. The mutant lacked spectroscopically detectable cytochromes c and aa3. No proteins containing c-type cytochrome could be identified in the mutant by heme staining of proteins fractionated on polyacrylamide gels, indicating that the mutant was defective in maturation of all c-type cytochromes. The Tn5 mutation was determined to be located in a gene that was called cycY. The cycY gene product is homologous to the thioredoxin-like protein HelX involved in the assembly of c-type cytochromes in Rhodobacter capsulatus and to an open reading frame from a Bradyrhizobium japonicum gene cluster containing other genes involved in cytochrome c biogenesis. Our observations are consistent with CycY functioning as a thioredoxin that reduces cysteine residues in apocytochromes c before heme attachment.  相似文献   

8.
U Schnider  C Keel  C Voisard  G Dfago    D Haas 《Applied microbiology》1995,61(11):3856-3864
Pseudomonas fluorescens CHA0 produces several secondary metabolites, e.g., the antibiotics pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (Phl), which are important for the suppression of root diseases caused by soil-borne fungal pathogens. A Tn5 insertion mutant of strain CHA0, CHA625, does not produce Phl, shows enhanced Plt production on malt agar, and has lost part of the ability to suppress black root rot in tobacco plants and take-all in wheat. We used a rapid, two-step cloning-out procedure for isolating the wild-type genes corresponding to those inactivated by the Tn5 insertion in strain CHA625. This cloning method should be widely applicable to bacterial genes tagged with Tn5. The region cloned from P. fluorescens contained three complete open reading frames. The deduced gene products, designated PqqFAB, showed extensive similarities to proteins involved in the biosynthesis of pyrroloquinoline quinone (PQQ) in Klebsiella pneumoniae, Acinetobacter calcoaceticus, and Methylobacterium extorquens. PQQ-negative mutants of strain CHA0 were constructed by gene replacement. They lacked glucose dehydrogenase activity, could not utilize ethanol as a carbon source, and showed a strongly enhanced production of Plt on malt agar. These effects were all reversed by complementation with pqq+ recombinant plasmids. The growth of a pqqF mutant on ethanol and normal Plt production were restored by the addition of 16 nM PQQ. However, the Phl- phenotype of strain CHA625 was due not to the pqq defect but presumably to a secondary mutation. In conclusion, a lack of PQQ markedly stimulates the production of Plt in P. fluorescens.  相似文献   

9.
Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway   总被引:13,自引:8,他引:5  
Exoenzyme S is an extracellular ADP-ribosyltransferase of Pseudomonas aeruginosa . Transposon mutagenesis of P. aeruginosa 388 was used to identify genes required for exoenzyme S production. Five Tn 5  Tc insertion mutants were isolated which exhibited an exoenzyme S-deficient phenotype (388::Tn 5  Tc 469, 550, 3453, 4885, and 5590). Mapping experiments demonstrated that 388::Tn 5  Tc 3453, 4885, and 5590 possessed insertions within a 5.0 kb Eco RI fragment that is not contiguous with the exoenzyme S trans -regulatory operon. 388::Tn 5  Tc 469 and 550 mapped to a region downstream of the trans -regulatory operon which has been previously shown to contain a promoter region that is co-ordinately regulated with exoenzyme S synthesis. Nucleotide sequence analysis of a 7.2 kb region flanking the 388::Tn 5  Tc 469 and 550 insertions, identified 12 contiguous open reading frames (ORFs). Database searches indicated that the first ORF, ExsD, is unique. The other 11 ORFs demonstrated high homology to the YscB–L proteins of the yersiniae Yop type III export apparatus. RNase-protection analysis of wild-type and mutant strains indicated that exsD and pscB–L form an operon. To determine whether ExoS was exported by a type III mechanism, derivatives consisting of internal deletions or lacking amino- or carboxy-terminal residues were expressed in P. aeruginosa . Deletion analyses indicated that the amino-terminal nine residues are required for ExoS export. Combined data from mutagenesis, regulatory, expression, and sequence analyses provide strong evidence that P. aeruginosa possesses a type III secretion apparatus which is required for the export of exoenzyme S and potentially other co-ordinately regulated proteins.  相似文献   

10.
We demonstrated the utility of Escherichia coli alkaline phosphatase, encoded by phoA, as a reporter molecule for genetic fusions in Rhodobacter sphaeroides. A portion of the R. sphaeroides cycA gene was fused to phoA, yielding a fusion protein comprising the putative signal sequence and first 10 amino acids of the cytochrome c2 apoprotein joined to the sixth amino acid of alkaline phosphatase. The fusion protein was efficiently transported to the periplasm of R. sphaeroides as determined by enzyme activity, Western immunoblot analysis, and immunogold electron microscopy. We also documented the ability of an R. sphaeroides mutant, RS104, with gross defects in photosynthetic membrane morphology to efficiently recognize and translocate the fusion protein to the periplasmic compartment. The inclusion of 500 base pairs of R. sphaeroides DNA in cis to the cycA structural gene resulted in a 2.5-fold increase in alkaline phosphatase activity in photosynthetically grown cells compared with the activity in aerobically grown cells, demonstrating that the fusion protein is regulated in a manner similar to that of cytochrome c2 regulation. We also constructed two pUC19-based plasmids suitable for the construction of translational fusions to phoA. In these plasmids, translational fusions of phoA to the gene under consideration can be made in all three reading frames, thus facilitating construction and expression of fusion protein systems utilizing phoA.  相似文献   

11.
Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.  相似文献   

12.
13.
Abstract Pseudomonas fluorescens was subjected to insertion mutagenesis studies using the transposon Tn5-GM to generate mutants deficient in antibacterial activity minus mutants. The transposon located on the temperature-sensitive plasmid pCHR84 was conjugally transferred into the non-pathogenic pseudomonad using the triparental mating procedure. Random integration of Tn 5 -GM into the chromosome of P. fluorescens was achieved by heat ttreatment of the transformed cells at 42°C. Approximately 2% of transconjugants revealed an auxotrophic phenotype indicating efficient integration of the employed transposon into the chromosome of P. fluorescens . One transposon insertion mutant was obtained showing an antibacterial activity minus phenotype. This mutant (MM-7) was found to be defective in the production of an unidentified antibacterial compound against B. subtilis . These results introduce Tn 5 transposon mutagenesis as a new useful tool for the molecular analysis of P. fluorescens .  相似文献   

14.
We isolated a toluene-sensitive mutant, named mutant No. 32, which showed unchanged antibiotic resistance levels, from toluene-tolerant Pseudomonas putida IH-2000 by transposon mutagenesis with Tn5. The gene disrupted by insertion of Tn5 was identified as cyoC, which is one of the subunits of cytochrome o. The membrane protein, phospholipid, and lipopolysaccharide (LPS) of IH-2000 and that of mutant No. 32 were examined and compared. Some of the outer membrane proteins showed a decrease in mutant No. 32. The fatty acid components of LPS were found to be dodecanoic acid, 2-hydroxydodecanoic acid, 3-hydroxydodecanoic acid, and 3-hydroxydecanoic acid in both IH-2000 and No. 32; however, the relative proportions of these components differed in the two strains. Furthermore, cell surface hydrophobicity was increased in No. 32. These data suggest that mutation of cyoC caused the decrease in outer membrane proteins and the changing fatty acid composition of LPS. These changes in the outer membrane would cause an increase in cell surface hydrophobicity, and mutant No. 32 is considered to be sensitive to toluene.  相似文献   

15.
16.
Involvement of nitrate reductase and pyoverdine in the competitiveness of the biocontrol strain Pseudomonas fluorescens C7R12 was determined, under gnotobiotic conditions, in two soil compartments (bulk and rhizosphere soil), with the soil being kept at two different values of matric potential (-1 and -10 kPa). Three mutants affected in the synthesis of either the nitrate reductase (Nar(-)), the pyoverdine (Pvd(-)), or both (Nar(-) Pvd(-)) were used. The Nar(-) and Nar(-) Pvd(-) mutants were obtained by site-directed mutagenesis of the wild-type strain and of the Pvd(-) mutant, respectively. The selective advantage given by nitrate reductase and pyoverdine to the wild-type strain was assessed by measuring the dynamic of each mutant-to-total-inoculant (wild-type strain plus mutant) ratio. All three mutants showed a lower competitiveness than the wild-type strain, indicating that both nitrate reductase and pyoverdine are involved in the fitness of P. fluorescens C7R12. The double mutant presented the lowest competitiveness. Overall, the competitive advantages given to C7R12 by nitrate reductase and pyoverdine were similar. However, the selective advantage given by nitrate reductase was more strongly expressed under conditions of lower aeration (-1 kPa). In contrast, the selective advantage given by nitrate reductase and pyoverdine did not differ in bulk and rhizosphere soil, indicating that these bacterial traits are not specifically involved in the rhizosphere competence but rather in the saprophytic ability of C7R12 in soil environments.  相似文献   

17.
Fluorescent pseudomonads catabolize glucose simultaneously by two different pathways, namely, the oxidative pathway in periplasm and the phosphorylative pathway in cytoplasm. This study provides evidence for the role of glucose metabolism in the regulation of pyoverdine synthesis in Pseudomonas putida S11. We have characterized the influence of direct oxidation of glucose in periplasm on pyoverdine synthesis in P. putida S11. We identified a Tn5 transposon mutant of P. putida S11 showing increased pyoverdine production in minimal glucose medium (MGM). This mutant designated as IST1 had Tn5 insertion in glucose dehydrogenase (gcd) gene. To verify the role of periplasmic oxidation of glucose on pyoverdine synthesis, we constructed mutants S11 Gcd? and S11 PqqF? by antibiotic cassette mutagenesis. These mutants of P. putida S11 with loss of glucose dehydrogenase gene (gcd) or cofactor pyrroloquinoline quinone biosynthesis gene (pqqF) showed increased pyoverdine synthesis and impaired acid production in MGM. In minimal gluconate medium, the pyoverdine production of wild-type strain S11 and mutants S11 Gcd? and S11 PqqF? was higher than in MGM indicating that gluconate did not affect pyoverdine synthesis. In MGM containing PIPES–NaOH (pH?7.5) buffer which prevent pH changes due to gluconic acid production, strain S11 produced higher amount of pyoverdine similar to mutants S11 Gcd? and S11 PqqF?. Therefore, it is proposed that periplasmic oxidation of glucose to gluconic acid decreases the pH of MGM and thereby influences pyoverdine synthesis of strain S11. The increased pyoverdine synthesis enhanced biotic and abiotic surface colonization of the strain S11.  相似文献   

18.
Pseudomonas syringae pv. syringae , like many plant pathogenic bacteria, secretes a 'harpin' protein that can elicit the hypersensitive response (HR), a defensive cellular suicide, in non-host plants. The harpin-encoding hrpZ gene is located in an operon that also encodes Hrp secretion pathway components and is part of the functional cluster of hrp genes carried on cosmid pHIR11 that enables saprophytic bacteria like Escherichia coli and Pseudomonas fluorescens to elicit the HR in tobacco leaves. We have constructed functionally non-polar hrpZ deletion mutations, revealing that HrpZ is necessary for saprophytic bacteria carrying pHIR11 to elicit a typical HR, whereas it only enhances the elicitation activity of P. s. syringae . Partial deletion mutations revealed that the N-terminal 153 amino acids of HrpZ can enable E. coli MC4100-(pHIR11) to elicit a strong HR. hrpZ subclone products comprising the N-terminal 109 amino acids and C-terminal 216 amino acids, respectively, of the 341 amino acid protein were isolated and found to elicit the HR. P. fluorescens (pHIR11 hrmA  ::Tn phoA ) mutants do not elicit the HR, but cell fractionation and immunoblot analysis revealed that they produce and secrete wild-type levels of HrpZ. Therefore, elicitor activity resides in multiple regions of HrpZ, P. syringae produces elicitor(s) in addition to HrpZ, and HrpZ is essential but not sufficient for HR elicitation by saprophytic bacteria carrying pHIR11.  相似文献   

19.
20.
One of the chromosomal regions of Pseudomonas syringae pv. syringae encoding pathogenicity factors had been mapped into a 3.9-kilobase-pair fragment in previous studies. Promoter probe analysis indicated the existence of a promoter near one end of the fragment. DNA sequencing of this fragment revealed the existence of a consensus promoter sequence in the region of the promoter activity and two open reading frames (ORFs) downstream. These ORFs, ORF1 and ORF2, encoded putative polypeptides of 40 and 83 kilodaltons, respectively. All ORF1::Tn5 as well as ORF2::Tn5 mutant strains were nonpathogenic on susceptible host bean plants and were unable to elicit hypersensitive reactions on nonhost tobacco plants. The deduced amino acid sequence of the 83-kilodalton polypeptide contained features characteristic of known integral membrane proteins. Fusion of the lacZ gene to ORF2 led to the expression of a hybrid protein inducible in Escherichia coli. The functions of the putative proteins encoded by ORF1 and ORF2 are unknown at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号