首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexose transporters play a pivotal role in the absorption of food-derived monosaccharides in the gastrointestinal tract. Although a basic knowledge of the hexose transporters has already been gained, their detailed distribution and comparative intensities of expression throughout the gastrointestinal tract have not been fully elucidated. In this study, we quantitatively evaluated the expression of SGLT1, GLUT1, GLUT2, and GLUT5 by in situ hybridization and real-time PCR techniques using a total of 28 segments from the gastrointestinal tract of 9-week-old mice. GLUT2 and GLUT5 mRNA expressions were detected predominantly from the proximal to middle parts of the small intestine, showing identical expression profiles, while SGLT1 mRNA was expressed not only in the small intestine but also in the large intestine. Notably, GLUT1 mRNA was expressed at a considerable level in both the stomach and large intestine but was negligible in the small intestine. Immunohistochemistry demonstrated the polarized localization of hexose transporters in the large intestine: SGLT1 on the luminal surface and GLUT1 on the basal side of epithelial cells. The present study provided more elaborate information concerning the localization of hexose transporters in the small intestine. Furthermore, this study revealed the significant expression of glucose transporters in the large intestine, suggesting the existence of the physiological uptake of glucose in that location in mice.  相似文献   

2.
3.
Postmeiotic spermatogenic cells, but not meiotic spermatogenic cells respond differentially with glucose-induced changes in [Ca2+]i indicating a differential transport of glucose via facilitative hexose transporters (GLUTs) specifically distributed in the plasma membrane. Several studies have indicated that plasma membrane in mammalian cells is not homogeneously organized, but contains specific microdomains known as detergent-resistant membrane domains (DRMDs), lipid rafts or caveolae. The association of these domains and GLUTs isoforms has not been characterized in spermatogenic cells. We analyzed the expression and function of GLUT1 and GLUT3 in isolated spermatocytes and spermatids. The results showed that spermatogenic cells express both glucose transporters, with spermatids exhibiting a higher affinity glucose transport system. In addition, spermatogenic cells express caveolin-1, and glucose transporters colocalize with caveolin-1 in caveolin-enriched membrane fractions. Experiments in which the integrity of caveolae was disrupted by pretreatment with methyl-beta-cyclodextrin, indicated that the involvement of cholesterol-enriched plasma membrane microdomains were involved in the localization of GLUTs and uptake of 2-deoxyglucose. We also observed cofractionation of GLUT3 and caveolin-1 in low-buoyant density membranes together with their shift to higher densities after methyl-beta-cyclodextrin treatment. GLUT1 was found in all fractions isolated. Immunofluorescent studies indicated that caveolin-1, GLUT1, and hexokinase I colocalize in spermatocytes while caveolin-1, GLUT3, and hexokinase I colocalize in spermatids. These findings suggest the presence of hexose transporters in DRMDs, and further support a role for intact caveolae or cholesterol-enriched membrane microdomains in relation to glucose uptake and glucose phosphorylation. The results would also explain the different glucose-induced changes in [Ca2+]i in both cells.  相似文献   

4.
Arsenic exposure is associated with hypertension, diabetes, and cancer. Some mammals methylate arsenic. Saccharomyces cerevisiae hexose permeases catalyze As(OH)(3) uptake. Here, we report that mammalian glucose transporter GLUT1 catalyzes As(OH)(3) and CH(3)As(OH)(2) uptake in yeast or in Xenopus laevis oocytes. Expression of GLUT1 in a yeast lacking other glucose transporters allows for growth on glucose. Yeast expressing yeast HXT1 or rat GLUT1 transport As(OH)(3) and CH(3)As(OH)(2). The K(m) of GLUT1 is to 1.2mM for CH(3)As(OH)(2), compared to a K(m) of 3mM for glucose. Inhibition between glucose and CH(3)As(OH)(2) is noncompetitive, suggesting differences between the translocation pathways of hexoses and arsenicals. Both human and rat GLUT1 catalyze uptake of both As(OH)(3) and CH(3)As(OH)(2) in oocytes. Thus GLUT1 may be a major pathway uptake of both inorganic and methylated arsenicals in erythrocytes or the epithelial cells of the blood-brain barrier, contributing to arsenic-related cardiovascular problems and neurotoxicity.  相似文献   

5.
6.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

7.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

8.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

9.
In the past few years, 8 additional members of the facilitative hexose transporter family have been identified, giving a total of 14 members of the SLC2A family of membrane-bound hexose transporters. To determine which of the new hexose transporters were expressed in muscle, mRNA concentrations of 11 glucose transporters (GLUTs) were quantified and compared. RNA from muscle from 10 normal volunteers was subjected to RT-PCR. Primers were designed that amplified 78- to 241-base fragments, and cDNA standards were cloned for GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, GLUT8, GLUT9, GLUT10, GLUT11, GLUT12, and GAPDH. Seven of these eleven hexose transporters were detectable in normal human muscle. The rank order was GLUT4, GLUT5, GLUT12, GLUT8, GLUT11, GLUT3, and GLUT1, with corresponding concentrations of 404 +/- 49, 131 +/- 14, 33 +/- 4, 5.5 +/- 0.5, 4.1 +/- 0.4, 1.2 +/- .0.1, and 0.9 +/- 0.2 copies/ng RNA (means +/- SE), respectively, for the 10 subjects. Concentrations of mRNA for GLUT4, GLUT5, and GLUT12 were much higher than those for the remainder of the GLUTs and together accounted for 98% of the total GLUT isoform mRNA. Immunoblots of muscle homogenates verified that the respective proteins for GLUT4, GLUT5, and GLUT12 were present in normal human muscle. Immunofluorescent studies demonstrated that GLUT4 and GLUT12 were predominantly expressed in type I oxidative fibers; however, GLUT5 was expressed predominantly in type II (white) fibers.  相似文献   

10.
Maintenance of glucose uptake is a key component in the response of hematopoietic cells to survival factors. To investigate the mechanism of this response we employed the interleukin-3 (IL-3)-dependent murine mast cell line IC2.9. In these cells, hexose uptake decreased markedly upon withdrawal of IL-3, whereas its readdition led to rapid (t(1/2) approximately 10 min) stimulation of transport, associated with an approximately 4-fold increase in Vmax but no change in Km. Immunocytochemistry and photoaffinity labeling revealed that IL-3 caused translocation of intracellular GLUT1 transporters to the cell surface, whereas a second transporter isoform, GLUT3, remained predominantly intracellular. The inhibitory effects of latrunculin B and jasplakinolide, and of nocodazole and colchicine, respectively, revealed a requirement for both the actin and microtubule cytoskeletons in GLUT1 translocation and transport stimulation. Both IL-3 stimulation of transport and GLUT1 translocation were also prevented by the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002. The time courses for activation of phosphatidylinositol 3-kinase and its downstream target, protein kinase B, by IL-3 were consistent with a role in IL-3-induced transporter translocation and enhanced glucose uptake. We conclude that one component of the survival mechanisms elicited by IL-3 involves the subcellular redistribution of glucose transporters, thus ensuring the supply of a key metabolic substrate.  相似文献   

11.
Endocytosis regulates the plasma membrane protein landscape in response to environmental cues. In yeast, the endocytosis of transporters depends on their ubiquitylation by the Nedd4-like ubiquitin ligase Rsp5, but how extracellular signals trigger this ubiquitylation is unknown. Various carbon source transporters are known to be ubiquitylated and endocytosed when glucose-starved cells are exposed to glucose. We show that this required the conserved arrestin-related protein Rod1/Art4, which was activated in response to glucose addition. Indeed, Rod1 was a direct target of the glucose signaling pathway composed of the AMPK homologue Snf1 and the PP1 phosphatase Glc7/Reg1. Glucose promoted Rod1 dephosphorylation and its subsequent release from a phospho-dependent interaction with 14-3-3 proteins. Consequently, this allowed Rod1 ubiquitylation by Rsp5, which was a prerequisite for transporter endocytosis. This paper therefore demonstrates that the arrestin-related protein Rod1 relays glucose signaling to transporter endocytosis and provides the first molecular insights into the nutrient-induced activation of an arrestin-related protein through a switch in post-translational modifications.  相似文献   

12.
BACKGROUND: Adipose and muscle tissues express an insulin-sensitive glucose transporter (GLUT4). This transporter has been shown to translocate from intracellular stores to the plasma membrane following insulin stimulation. The molecular mechanisms signalling this event and the details of the translocation pathway remain unknown. In type II diabetes, the cellular transport of glucose in response to insulin is impaired, partly explaining why blood-glucose levels in patients are not lowered by insulin as in normal individuals. MATERIALS AND METHODS: Isolated rat epididymal adipocytes were stimulated with insulin and subjected to subcellular fractionation and to measurement of glucose uptake. A caveolae-rich fraction was isolated from the plasma membranes after detergent solubilization and ultracentrifugal floatation in a sucrose gradient. Presence of GLUT4 and caveolin was determined by immunoblotting after SDS-PAGE. RESULTS: In freshly isolated adipocytes, insulin induced a rapid translocation of GLUT4 to the plasma membrane fraction, which was followed by a slower transition of the transporter into a detergent resistant caveolae-rich region of the plasma membrane. The insulin-stimulated appearance of transporters in the caveolae-rich fraction occurred in parallel with enhanced glucose uptake by cells. Treatment with isoproterenol plus adenosine deaminase rapidly inhibited insulin-stimulated glucose transport by 40%, and at the same time GLUT4 disappeared from the caveolae-rich fraction and from plasma membranes as a whole. CONCLUSIONS: Insulin stimulates glucose uptake in adipocytes by rapidly translocating GLUT4 from intracellular stores to the plasma membrane. This is followed by a slower transition of GLUT4 to the caveolae-rich regions of the plasma membrane, where glucose transport appears to take place. These results have implications for an understanding of the defect in glucose transport involved in type II diabetes.  相似文献   

13.
The unique COOH-terminal 30-amino acid region of the adipocyte/skeletal muscle glucose transporter (GLUT4) appears to be a major structural determinant of this protein's perinuclear localization, from where it is redistributed to the cell surface in response to insulin. To test whether an underlying mechanism of this domain's function involves glucose transporter endocytosis rates, transfected cells were generated expressing exofacial hemagglutinin epitope (HA)-tagged erythrocyte/brain glucose transporter (GLUT1) or a chimera containing the COOH-terminal 30 amino acids of GLUT4 substituted onto this GLUT1 construct. Incubation of COS-7 or CHO cells expressing the HA-tagged chimera with anti-HA antibody at 37 degrees resulted in an increased rate of antibody internalization compared to cells expressing similar levels of HA-tagged GLUT1, which displays a cell surface disposition. Colocalization of the internalized anti-HA antibody in vesicular structures with internalized transferrin and with total transporters was established by digital imaging microscopy, suggesting the total cellular pool of transporters are continuously recycling through the coated pit endocytosis pathway. Mutation of the unique double leucines 489 and 490 in the rat GLUT4 COOH-terminal domain to alanines caused the HA-tagged chimera to revert to the slow endocytosis rate and steady- state cell surface display characteristic of GLUT1. These results support the hypothesis that the double leucine motif in the GLUT4 COOH terminus operates as a rapid endocytosis and retention signal in the GLUT4 transporter, causing its localization to intracellular compartments in the absence of insulin.  相似文献   

14.
To understand the molecular mechanisms responsible for the sepsis-induced enhanced glucose uptake, we have examined the levels of GLUT4 and GLUT1 mRNA and protein in the adipose tissue of septic animals. Rats were challenged with a nonlethal septic insult where euglycemia was maintained and hexose uptake in adipose tissue was markedly elevated. Northern blot analysis of total RNA isolated from epididymal fat pads indicated differential regulation of the mRNA content for the two transporters: GLUT1 mRNA was increased 2.6 to 4.6-fold, while GLUT4 mRNA was decreased by 2.5 to 2.9-fold. Despite the difference in mRNA levels, both GLUT1 and GLUT4 protein were down regulated in plasma membranes (40% and 25%, respectively) and microsomal membranes (42% and 25%, respectively) of the septic animals. The increased glucose uptake cannot be explained by the membrane content of GLUT1 and GLUT4 protein. Thus, during hypermetabolic sepsis, increased glucose utilization by adipose tissue is dependent on alternative processes.  相似文献   

15.
The very last member of the SLC2A gene family of facilitated hexose transporters to be cloned was SLC2A7 (hGLUT7). It has been assigned to the class II of the GLUT family on the basis of sequence similarity, and its closest family member is GLUT5, an intestinal fructose transporter. GLUT7 is primarily expressed in the small intestine and colon, although mRNA has been detected in the testis and prostate as well. The protein is expressed in the apical membrane of the small intestine and colon, and it has a high affinity (<0.5 mM) for glucose and fructose. The abundance of the protein in the small intestine does change in parallel with the dietary carbohydrate. However, the distribution of GLUT7 along the small intestine does not entirely match with the availability of glucose and fructose, suggesting that the physiological substrate for this transporter has yet to be identified. Unlike GLUT13, the proton-coupled myoinositol transporter (HMIT), there is no evidence for the coupling of protons to the hexose movement via GLUT7. One area of study in which GLUT7 has provided a useful comparison with GLUT1 has been in the development of the hypothesis that the facilitated hexose transporters may have a selectivity filter at the exofacial opening of the translocation pore, which helps to determine which hexoses can be transported. If substantiated, the elucidation of this mechanism may prove useful in the design of hexose analogs for use in cancer imaging and therapeutics.  相似文献   

16.
G W Gould  H M Thomas  T J Jess  G I Bell 《Biochemistry》1991,30(21):5139-5145
We describe the functional expression of three members of the family of human facilitative glucose transporters, the erythrocyte-type transporter (GLUT 1), the liver-type transporter (GLUT 2), and the brain-type transporter (GLUT 3), by microinjection of their corresponding mRNAs into Xenopus oocytes. Expression was determined by the appearance of transport activity, as measured by the transport of 3-O-methyl-D-glucose or 2-deoxy-D-glucose. We have measured the Km for 3-O-methyl-D-glucose of GLUTs 1, 2, and 3, and the results are discussed in light of the possible roles for these different transporters in the regulation of blood glucose. The substrate specificity of these transporter isoforms has also been examined. We show that, for all transporters, the transport of 2-deoxy-D-glucose is inhibited by D-but not by L-glucose. In addition, both D-galactose and D-mannose are transported by GLUTs 1-3 at significant rates; furthermore, GLUT 2 is capable of transporting D-fructose. The nature of the glucose binding sites of GLUTs 1-3 was investigated by using hexose inhibition of 2-deoxy-D-glucose uptake. We show that the characteristics of this inhibition are different for each transporter isoform.  相似文献   

17.
The prevalence of type 2 diabetes mellitus is growing worldwide. By the year 2020, 250 million people will be afflicted. Most forms of type 2 diabetes are polygenic with complex inheritance patterns, and penetrance is strongly influenced by environmental factors. The specific genes involved are not yet known, but impaired glucose uptake in skeletal muscle is an early, genetically determined defect that is present in non-diabetic relatives of diabetic subjects. The rate-limiting step in muscle glucose use is the transmembrane transport of glucose mediated by glucose transporter (GLUT) 4 (ref. 4), which is expressed mainly in skeletal muscle, heart and adipose tissue. GLUT4 mediates glucose transport stimulated by insulin and contraction/exercise. The importance of GLUT4 and glucose uptake in muscle, however, was challenged by two recent observations. Whereas heterozygous GLUT4 knockout mice show moderate glucose intolerance, homozygous whole-body GLUT4 knockout (GLUT4-null) mice have only mild perturbations in glucose homeostasis and have growth retardation, depletion of fat stores, cardiac hypertrophy and failure, and a shortened life span. Moreover, muscle-specific inactivation of the insulin receptor results in minimal, if any, change in glucose tolerance. To determine the importance of glucose uptake into muscle for glucose homeostasis, we disrupted GLUT4 selectively in mouse muscles. A profound reduction in basal glucose transport and near-absence of stimulation by insulin or contraction resulted. These mice showed severe insulin resistance and glucose intolerance from an early age. Thus, GLUT4-mediated glucose transport in muscle is essential to the maintenance of normal glucose homeostasis.  相似文献   

18.
Endocytosis of nutrient transporters is stimulated under various conditions, such as elevated nutrient availability. In Saccharomyces cerevisiae, endocytosis is triggered by ubiquitination of transporters catalyzed by the E3 ubiquitin ligase Rsp5. However, how the ubiquitination is accelerated under certain conditions remains obscure. Here we demonstrate that closely related proteins Aly2/Art3 and Aly1/Art6, which are poorly characterized members of the arrestin-like protein family, mediate endocytosis of the aspartic acid/glutamic acid transporter Dip5. In aly2Δ cells, Dip5 is stabilized at the plasma membrane and is not endocytosed efficiently. Efficient ubiquitination of Dip5 is dependent on Aly2. aly1Δ cells also show deficiency in Dip5 endocytosis, although less remarkably than aly2Δ cells. Aly2 physically interacts in vivo with Rsp5 at its PY motif and also with Dip5, thus serving as an adaptor linking Rsp5 with Dip5 to achieve Dip5 ubiquitination. Importantly, the interaction between Aly2 and Dip5 is accelerated in response to elevated aspartic acid availability. This result indicates that the regulation of Dip5 endocytosis is accomplished by dynamic recruitment of Rsp5 via Aly2.  相似文献   

19.
20.
In most animal cells, transport of monosaccharides across the plasma membrane is mediated by glucose transporters (GLUT). Mammals express at least five distinct transporters (GLUTs 1--5), which are well characterised both functionally and genetically. In contrast, the glucose transport system of fish remains poorly studied. Here we report studies of hexose uptake in carp EPC cells and cloning of a glucose transporter cDNA from these cells. Transport of radio-labelled methylglucose (3-OMG) followed Michaelis--Menten kinetics with a K(m) value (8.5 mM) similar to that of mammalian cells. The inhibition of transport by cytochalasin B and phloretin, but not by phloridzin or cyanide, strongly suggested the existence of a facilitative carrier. D-Glucose, 2-deoxyglucose, 3-OMG, D-mannose and D-xylose were competitive inhibitors of 3-OMG uptake, while L-glucose, mannitol, D-fructose, D-ribose and sucrose did not compete with 3-OMG. We cloned a carp glucose transporter (CyiGLUT1), using RT-PCR and RACE strategies. CyiGLUT1 was different from known carp and zebrafish EST sequences. The complete cDNA (3060 bp) contained one open reading frame encoding a predicted protein of 478 amino acids. The deduced amino acid sequence shared 78% identity with mammalian and avian GLUT1 proteins. Key amino acids involved in substrate selection and catalysis of mammalian GLUTs were conserved in the carp transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号