首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular epidemiology: new rules for new tools?   总被引:1,自引:0,他引:1  
Molecular epidemiology combines biological markers and epidemiological observations in the study of the environmental and genetic determinants of cancer and other diseases. The potential advantages associated with biomarkers are manifold and include: (a) increased sensitivity and specificity to carcinogenic exposures; (b) more precise evaluation of the interplay between genetic and environmental determinants of cancer; (c) earlier detection of carcinogenic effects of exposure; (d) characterization of disease subtypes-etiologies patterns; (e) evaluation of primary prevention measures. These, in turn, may translate into better tools for etiologic research, individual risk assessment, and, ultimately, primary and secondary prevention. An area that has not received sufficient attention concerns the validation of these biomarkers as surrogate endpoints for cancer risk. Validation of a candidate biomarker's surrogacy is the demonstration that it possesses the properties required for its use as a substitute for a true endpoint. The principles underlying the validation process underwent remarkable developments and discussion in therapeutic research. However, the challenges posed by the application of these principles to epidemiological research, where the basic tool for this validation (i.e., the randomized study) is seldom possible, have not been thoroughly explored. The validation process of surrogacy must be applied rigorously to intermediate biomarkers of cancer risk before using them as risk predictors at the individual as well as at the population level.  相似文献   

2.
Here we report the development of a publicly available Web-based analysis tool for exploring proteins expressed in a tissue- or cancer-specific manner. The search queries are based on the human tissue profiles in normal and cancer cells in the Human Protein Atlas portal and rely on the individual annotation performed by pathologists of images representing immunohistochemically stained tissue sections. Approximately 1.8 million images representing more than 3000 antibodies directed toward human proteins were used in the study. The search tool allows for the systematic exploration of the protein atlas to discover potential protein biomarkers. Such biomarkers include tissue-specific markers, cell type-specific markers, tumor type-specific markers, markers of malignancy, and prognostic or predictive markers of cancers. Here we show examples of database queries to generate sets of candidate biomarker proteins for several of these different categories. Expression profiles of candidate proteins can then subsequently be validated by examination of the underlying high resolution images. The present study shows examples of search strategies revealing several potential protein biomarkers, including proteins specifically expressed in normal cells and in cancer cells from specified tumor types. The lists of candidate proteins can be used as a starting point for further validation in larger patient cohorts using both immunological approaches and technologies utilizing more classical proteomics tools.  相似文献   

3.
In the early 1990s, U.S. Environmental Protection Agency Region 9 developed a training workshop for environmental professionals. It was successfully taught throughout Region 9 in collaboration with the California Department of Toxic Substances Control. We have updated the workshop's manual to incorporate current practices including: vapor intrusion into indoor air, benchmark dose, cancer guidelines, inhalation guidance, ecological and screening risk assessments, conceptual site models, and data quality objectives. We maintained the popular workshop format, with participants evaluating information and drawing conclusions in an interactive hands-on approach. We kept the case study approach to simulate realistic environmental issues. After a case study introduction, participants plan a sampling strategy. Principles of toxicology are introduced, and participants develop toxicity criteria using hypothetical animal study results. Participants then identify exposure pathways, and calculate exposure and risk and hazard estimates. Finally, participants develop remedial alternatives and practice risk communication through role playing exercises. The workshop has been an effective tool for training new employees and providing continuing education for experienced employees from consulting, military, and regulatory agencies. The format provides a dynamic learning environment, fostering exchanges among professionals with a wide range of skills and backgrounds (project managers, toxicologists, geologists, engineers, public participation experts).  相似文献   

4.
Predictive biomarkers are discovered and used in oncology research to formulate hypotheses aimed at the identification of patients benefiting from specific therapeutic intervention(s). They pave the way to the development of companion diagnostic tests which are tools readily implemented in the clinic and serve to qualify a patient for treatment with a particular targeted drug or the continued use of a particular drug, thus maximizing the benefit to risk ratio of the medical intervention to the patient. Predictive biomarkers are defined by biological characteristics of the patient's or tumor status that can be measured objectively and correlated with clinical outcome: these can be molecular, cellular or biochemical features. Predictive markers need extensive analytical validation - specific for the tool utilized for their assessment - as well as rigorous clinical qualification in the context of the drug treatment for which they define clinical utility. The process of companion diagnostic development is a highly interdisciplinary and complex one, driven by key crucial milestones and accompanying the same and typical process of a whole drug discovery and development continuum, from marker discovery and validation, assay development, clinical qualification until test approval and commercialization.  相似文献   

5.
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.  相似文献   

6.
7.
MicroRNAs (miRNAs) have been shown to be promising biomarkers in predicting cancer prognosis. However, inappropriate or poorly optimized processing and modeling of miRNA expression data can negatively affect prediction performance. Here, we propose a holistic solution for miRNA biomarker selection and prediction model building. This work introduces the use of a neural network cascade, a cascaded constitution of small artificial neural network units, for evaluating miRNA expression and patient outcome. A miRNA microarray dataset of nasopharyngeal carcinoma was retrieved from Gene Expression Omnibus to illustrate the methodology. Results indicated a nonlinear relationship between miRNA expression and patient death risk, implying that direct comparison of expression values is inappropriate. However, this method performs transformation of miRNA expression values into a miRNA score, which linearly measures death risk. Spearman correlation was calculated between miRNA scores and survival status for each miRNA. Finally, a nine-miRNA signature was optimized to predict death risk after nasopharyngeal carcinoma by establishing a neural network cascade consisting of 13 artificial neural network units. Area under the ROC was 0.951 for the internal validation set and had a prediction accuracy of 83% for the external validation set. In particular, the established neural network cascade was found to have strong immunity against noise interference that disturbs miRNA expression values. This study provides an efficient and easy-to-use method that aims to maximize clinical application of miRNAs in prognostic risk assessment of patients with cancer.  相似文献   

8.
《Endocrine practice》2021,27(12):1175-1182
ObjectiveTo develop and validate an individualized risk prediction model for the need for central cervical lymph node dissection in patients with clinical N0 papillary thyroid carcinoma (PTC) diagnosed using ultrasound.MethodsUpon retrospective review, derivation and internal validation cohorts comprised 1585 consecutive patients with PTC treated from January 2017 to December 2019 at hospital A. The external validation cohort consisted of 406 consecutive patients treated at hospital B from January 2016 to June 2020. Independent risk factors for central cervical lymph node metastasis (CLNM) were determined through univariable and multivariable logistic regression analysis. An individualized risk prediction model was constructed and illustrated as a nomogram, which was internally and externally validated.ResultsThe following risk factors of CLNM were established: a solitary primary thyroid nodule’s diameter, shape, calcification, and capsular abutment-to-lesion perimeter ratio. The areas under the receiver operating characteristic curves of the risk prediction model for the internal and external validation cohorts were 0.921 and 0.923, respectively. The calibration curve showed good agreement between the nomogram-estimated probability of CLNM and the actual CLNM rates in the 3 cohorts. The decision curve analysis confirmed the clinical usefulness of the nomogram.ConclusionThis study developed and validated a model for predicting the risk of CLNM in individual patients with clinical N0 PTC, which should be an efficient tool for guiding clinical treatment.  相似文献   

9.
Ovarian carcinomas relate to highest death rate in gynecologic malignancies as absence of symptoms shield the disease in the early stage. Current evidences have been devoted to discovering early effective screening mechanism prior to the onset of clinical symptoms. Therefore, biomarkers are the crucial tools that are capable of predicting progression, risk stratification and overall therapeutic benefit to fight against this deadly disease. Although recent studies have revealed serum protein markers, CA-125, HE4, mesothelin etc. have higher sensitivity and specificity at the early stages of the cancer; the critical questions arise regarding the applicability and reproducibility of genomic profiling across different patient groups. Hence, our hypothesis is that the panels of signature biomarkers will be much more effective to improve the diagnosis and prediction of patient survival outcome with high sensitivity and specificity. Ovarian cancer is heterogeneous in nature and contain a sub-population of stem cell-like characteristics that has the ability to grow as anchorage-independent manner and subsequently is able to metastasize. Highly tumorigenic and chemotherapy-resistant cancer stem cells (CSCs)-specific biomarkers therefore reflects the interesting possibilities to be targeted to minimize the high frequency of relapse and resistance to drugs. Several putative ovarian CSC markers such as CD24, CD44, CD133, SSEA have already been proposed in recent studies, yet, a large panel of updated biomarkers have high clinical relevance to define the prospective isolation of viable circulating CSCs. Therefore, this review highlights current evidence based updated ovarian cancer specific prognostic and diagnostic biomarkers and potential importance of CSCs in context of tumorigenicity and metastatic activity for fundamental biological and clinical implications.  相似文献   

10.

Objective

Automated surveillance of healthcare-associated infections can improve efficiency and reliability of surveillance. The aim was to validate and update a previously developed multivariable prediction model for the detection of drain-related meningitis (DRM).

Design

Retrospective cohort study using traditional surveillance by infection control professionals as reference standard.

Patients

Patients receiving an external cerebrospinal fluid drain, either ventricular (EVD) or lumbar (ELD) in a tertiary medical care center. Children, patients with simultaneous drains, <1 day of follow-up or pre-existing meningitis were excluded leaving 105 patients in validation set (2010–2011) and 653 in updating set (2004–2011).

Methods

For validation, the original model was applied. Discrimination, classification and calibration were assessed. For updating, data from all available years was used to optimally re-estimate coefficients and determine whether extension with new predictors is necessary. The updated model was validated and adjusted for optimism (overfitting) using bootstrapping techniques.

Results

In model validation, the rate of DRM was 17.4/1000 days at risk. All cases were detected by the model. The area under the ROC curve was 0.951. The positive predictive value was 58.8% (95% CI 40.7–75.4) and calibration was good. The revised model also includes Gram stain results. Area under the ROC curve after correction for optimism was 0.963 (95% CI 0.953– 0.974). Group-level prediction was adequate.

Conclusions

The previously developed multivariable prediction model maintains discriminatory power and calibration in an independent patient population. The updated model incorporates all available data and performs well, also after elaborate adjustment for optimism.  相似文献   

11.
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.  相似文献   

12.
Huang Y  Gilbert PB 《Biometrics》2011,67(4):1442-1451
Recently a new definition of surrogate endpoint, the "principal surrogate," was proposed based on causal associations between treatment effects on the biomarker and on the clinical endpoint. Despite its appealing interpretation, limited research has been conducted to evaluate principal surrogates, and existing methods focus on risk models that consider a single biomarker. How to compare principal surrogate value of biomarkers or general risk models that consider multiple biomarkers remains an open research question. We propose to characterize a marker or risk model's principal surrogate value based on the distribution of risk difference between interventions. In addition, we propose a novel summary measure (the standardized total gain) that can be used to compare markers and to assess the incremental value of a new marker. We develop a semiparametric estimated-likelihood method to estimate the joint surrogate value of multiple biomarkers. This method accommodates two-phase sampling of biomarkers and is more widely applicable than existing nonparametric methods by incorporating continuous baseline covariates to predict the biomarker(s), and is more robust than existing parametric methods by leaving the error distribution of markers unspecified. The methodology is illustrated using a simulated example set and a real data set in the context of HIV vaccine trials.  相似文献   

13.
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.  相似文献   

14.
Point-of-care diagnostic devices present a viable option for the rapid and sensitive detection and analysis of cancer markers. With the growing number of cancer cases being diagnosed worldwide and the increased number of fatalities due to late disease detection, biosensors can play an important role in the early diagnosis of cancer. Molecular profiles of patients are being increasingly studied using new molecular tools such as genomic and proteomic techniques. These methods combined with bioinformatics tools are generating new data which is being employed in the elucidation of new disease biomarkers. As with many disease conditions finding specific and sensitive markers that are associated with only one type of the disease can be difficult. In addition to this, the level of the biomarkers in biological fluids can vary depending on different disease conditions and stages. A number of molecular markers are therefore usually evaluated for cancer diagnosis and these can include proteins, peptides, over/under expression of gene markers and gene mutations. This review provides an overview of the biosensor technology available today, areas which are currently being developed and researched for cancer markers diagnosis—and a consideration of future prospects for the technology.  相似文献   

15.

Background  

The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell tumor (SRBCT) and thus often leads to misdiagnosis. Identification of biomarkers for distinguishing these cancers is a well studied problem. Existing methods typically evaluate each gene separately and do not take into account the nonlinear interaction between genes and the tools that are used to design the diagnostic prediction system. Consequently, more genes are usually identified as necessary for prediction. We propose a general scheme for finding a small set of biomarkers to design a diagnostic system for accurate classification of the cancer subgroups. We use multilayer networks with online gene selection ability and relational fuzzy clustering to identify a small set of biomarkers for accurate classification of the training and blind test cases of a well studied data set.  相似文献   

16.
In the evaluation of a biomarker for risk prediction, one can assess the performance of the biomarker in the population of interest by displaying the predictiveness curve. In conjunction with an assessment of the classification accuracy of a biomarker, the predictiveness curve is an important tool for assessing the usefulness of a risk prediction model. Inference for a single biomarker or for multiple biomarkers can be performed using summary measures of the predictiveness curve. We propose two partial summary measures, the partial total gain and the partial proportion of explained variation, that summarize the predictiveness curve over a restricted range of risk. The methods we describe can be used to compare two biomarkers when there are existing thresholds for risk stratification. We describe inferential tools for one and two samples that are shown to have adequate power in a simulation study. The methods are illustrated by assessing the accuracy of a risk score for predicting the onset of Alzheimer's disease.  相似文献   

17.
Summary Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time‐varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration (ORC) approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time‐independent point exposures when the disease is rare, it is not adaptable for use with time‐varying exposures. By recalibrating the measurement error model within each risk set, a risk set regression calibration (RRC) method is proposed for this setting. An algorithm for a bias‐corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard's Health Professionals Follow‐up Study (HPFS).  相似文献   

18.

Background

Chronic kidney disease (CKD) is common, and associated with increased risk of cardiovascular disease and end-stage renal disease, which are potentially preventable through early identification and treatment of individuals at risk. Although risk factors for occurrence and progression of CKD have been identified, their utility for CKD risk stratification through prediction models remains unclear. We critically assessed risk models to predict CKD and its progression, and evaluated their suitability for clinical use.

Methods and Findings

We systematically searched MEDLINE and Embase (1 January 1980 to 20 June 2012). Dual review was conducted to identify studies that reported on the development, validation, or impact assessment of a model constructed to predict the occurrence/presence of CKD or progression to advanced stages. Data were extracted on study characteristics, risk predictors, discrimination, calibration, and reclassification performance of models, as well as validation and impact analyses. We included 26 publications reporting on 30 CKD occurrence prediction risk scores and 17 CKD progression prediction risk scores. The vast majority of CKD risk models had acceptable-to-good discriminatory performance (area under the receiver operating characteristic curve>0.70) in the derivation sample. Calibration was less commonly assessed, but overall was found to be acceptable. Only eight CKD occurrence and five CKD progression risk models have been externally validated, displaying modest-to-acceptable discrimination. Whether novel biomarkers of CKD (circulatory or genetic) can improve prediction largely remains unclear, and impact studies of CKD prediction models have not yet been conducted. Limitations of risk models include the lack of ethnic diversity in derivation samples, and the scarcity of validation studies. The review is limited by the lack of an agreed-on system for rating prediction models, and the difficulty of assessing publication bias.

Conclusions

The development and clinical application of renal risk scores is in its infancy; however, the discriminatory performance of existing tools is acceptable. The effect of using these models in practice is still to be explored. Please see later in the article for the Editors'' Summary  相似文献   

19.

Background

Biomarker discovery holds the promise for advancing personalized medicine as the biomarkers can help match patients to optimal treatment to improve patient outcomes. However, serious concerns have been raised because very few molecular biomarkers or signatures discovered from high dimensional array data can be successfully validated and applied to clinical use. We propose good practice guidelines as well as a novel tool for biomarker discovery and use breast cancer prognosis as a case study to illustrate the proposed approach.

Results

We applied the proposed approach to a publicly available breast cancer prognosis dataset and identified small numbers of predictive markers for patient subpopulations stratified by clinical variables. Results from an independent cross-platform validation set show that our model compares favorably to other gene signature and clinical variable based prognostic tools. About half of the discovered candidate markers can individually achieve very good performance, which further demonstrate the high quality of feature selection. These candidate markers perform extremely well for young patient with estrogen receptor-positive, lymph node-negative early stage breast cancers, suggesting a distinct subset of these patients identified by these markers is actually at high risk of recurrence and may benefit from more aggressive treatment than cur-rent practice.

Conclusion

The results show that by following good practice guidelines, we can identify highly predictive genes in high dimensional breast cancer array data. These predictive genes have been successfully validated using an independent cross-platform dataset.
  相似文献   

20.
Evaluating the predictiveness of a continuous marker   总被引:2,自引:1,他引:1  
Huang Y  Sullivan Pepe M  Feng Z 《Biometrics》2007,63(4):1181-1188
Consider a continuous marker for predicting a binary outcome. For example, the serum concentration of prostate specific antigen may be used to calculate the risk of finding prostate cancer in a biopsy. In this article, we argue that the predictive capacity of a marker has to do with the population distribution of risk given the marker and suggest a graphical tool, the predictiveness curve, that displays this distribution. The display provides a common meaningful scale for comparing markers that may not be comparable on their original scales. Some existing measures of predictiveness are shown to be summary indices derived from the predictiveness curve. We develop methods for making inference about the predictiveness curve, for making pointwise comparisons between two curves, and for evaluating covariate effects. Applications to risk prediction markers in cancer and cystic fibrosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号