首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homology modeling methods have been used to construct models of two proteins—the histidine-containing phosphocarrier protein (HPr) from Mycoplasma capricolum and human eosinophil-derived neurotoxin (EDN). Comparison of the models with the subsequently determined X-ray crystal structures indicates that the core regions of both proteins are reasonably well reproduced, although the template structures are closer to the X-ray structures in these regions—possible enhancements are discussed. The conformations of most of the side chains in the core of HPr are well reproduced in the modeled structure. As expected, the conformations of surface side chains in this protein differ significantly from the X-ray structure. The loop regions of EDN were incorrectly modeled—reasons for this and possible enhancements are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

2.
3.
    
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
    
Performance in the template-based modeling (TBM) category of CASP13 is assessed here, using a variety of metrics. Performance of the predictor groups that participated is ranked using the primary ranking score that was developed by the assessors for CASP12. This reveals that the best results are obtained by groups that include contact predictions or inter-residue distance predictions derived from deep multiple sequence alignments. In cases where there is a good homolog in the wwPDB (TBM-easy category), the best results are obtained by modifying a template. However, for cases with poorer homologs (TBM-hard), very good results can be obtained without using an explicit template, by deep learning algorithms trained on the wwPDB. Alternative metrics are introduced, to allow testing of aspects of structural models that are not addressed by traditional CASP metrics. These include comparisons to the main-chain and side-chain torsion angles of the target, and the utility of models for solving crystal structures by the molecular replacement method. The alternative metrics are poorly correlated with the traditional metrics, and it is proposed that modeling has reached a sufficient level of maturity that the best models should be expected to satisfy this wider range of criteria.  相似文献   

5.
    
Kai Zhu  Tyler Day 《Proteins》2013,81(6):1081-1089
Antibodies have the capability of binding a wide range of antigens due to the diversity of the six loops constituting the complementarity determining region (CDR). Among the six loops, the H3 loop is the most diverse in structure, length, and sequence identity. Prediction of the three‐dimensional structures of antibodies, especially the CDR loops, is an important step in the computational design and engineering of novel antibodies for improved affinity and specificity. Although it has been demonstrated that the conformation of the five non‐H3 loops can be accurately predicted by comparing their sequences against databases of canonical loop conformations, no such connection has been established for H3 loops. In this work, we present the results for ab initio structure prediction of the H3 loop using conformational sampling and energy calculations with the program Prime on a dataset of 53 loops ranging in length from 4 to 22 residues. When the prediction is performed in the crystal environment and including symmetry mates, the median backbone root mean square deviation (RMSD) is 0.5 Å to the crystal structure, with 91% of cases having an RMSD of less than 2.0 Å. When the prediction is performed in a noncrystallographic environment, where the scaffold is constructed by swapping the H3 loops between homologous antibodies, 70% of cases have an RMSD below 2.0 Å. These results show promise for ab initio loop predictions applied to modeling of antibodies. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The prediction of protein 3D structures close to insertions and deletions or, more generally, loop prediction, is still one of the major challenges in homology modeling projects. In this article, we developed ranking criteria and selection filters to improve knowledge-based loop predictions. These criteria were developed and optimized for a test data set containing 678 insertions and deletions. The examples are, in principle, predictable from the used loop database with an RMSD < 1 A and represent realistic modeling situations. Four noncorrelated criteria for the selection of fragments are evaluated. A fast prefilter compares the distance between the anchor groups in the template protein with the stems of the fragments. The RMSD of the anchor groups is used for fitting and ranking of the selected loop candidates. After fitting, repulsive close contacts of loop candidates with the template protein are used for filtering, and fragments with backbone torsion angles, which are unfavorable according to a knowledge-based potential, are eliminated. By the combined application of these filter criteria to the test set, it was possible to increase the percentage of predictions with a global RMSD < 1 A to over 50% among the first five ranks, with average global RMSD values for the first rank candidate that are between 1.3 and 2.2 A for different loop lengths. Compared to other examples described in the literature, our large numbers of test cases are not self-predictions, where loops are placed in a protein after a peptide loop has been cut out, but are attempts to predict structural changes that occur in evolution when a protein is affected by insertions and deletions.  相似文献   

7.
    
A DNA/protein sequence comparison is a popular computational tool for molecular biologists. Finding a good alignment implies an evolutionary and/or functional relationship between proteins or genomic loci. Sequential similarity between two proteins indicates their structural resemblance, providing a practical approach for structural modeling, when structure of one of these proteins is known. The first step in the homology modeling is a construction of an accurate sequence alignment. The commonly used alignment algorithms do not provide an adequate treatment of the structurally mismatched residues in locally dissimilar regions. We propose a simple modification of the existing alignment algorithm which treats these regions properly and demonstrate how this modification improves sequence alignments in real proteins.  相似文献   

8.
    
Park H  Seok C 《Proteins》2012,80(8):1974-1986
Contemporary template-based modeling techniques allow applications of modeling methods to vast biological problems. However, they tend to fail to provide accurate structures for less-conserved local regions in sequence even when the overall structure can be modeled reliably. We call these regions unreliable local regions (ULRs). Accurate modeling of ULRs is of enormous value because they are frequently involved in functional specificity. In this article, we introduce a new method for modeling ULRs in template-based models by employing a sophisticated loop modeling technique. Combined with our previous study on protein termini, the method is applicable to refinement of both loop and terminus ULRs. A large-scale test carried out in a blind fashion in CASP9 (the 9th Critical Assessment of techniques for protein structure prediction) shows that ULR structures are improved over initial template-based models by refinement in more than 70% of the successfully detected ULRs. It is also notable that successful modeling of several long ULRs over 12 residues is achieved. Overall, the current results show that a careful application of loop and terminus modeling can be a promising tool for model refinement in template-based modeling.  相似文献   

9.
    
Protein loops are often involved in important biological functions such as molecular recognition, signal transduction, or enzymatic action. The three dimensional structures of loops can provide essential information for understanding molecular mechanisms behind protein functions. In this article, we develop a novel method for protein loop modeling, where the loop conformations are generated by fragment assembly and analytical loop closure. The fragment assembly method reduces the conformational space drastically, and the analytical loop closure method finds the geometrically consistent loop conformations efficiently. We also derive an analytic formula for the gradient of any analytical function of dihedral angles in the space of closed loops. The gradient can be used to optimize various restraints derived from experiments or databases, for example restraints for preferential interactions between specific residues or for preferred backbone angles. We demonstrate that the current loop modeling method outperforms previous methods that employ residue‐based torsion angle maps or different loop closure strategies when tested on two sets of loop targets of lengths ranging from 4 to 12. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
    
We present loop structure prediction results of the intracellular and extracellular loops of four G‐protein‐coupled receptors (GPCRs): bovine rhodopsin (bRh), the turkey β1‐adrenergic (β1Ar), the human β2‐adrenergic (β2Ar) and the human A2a adenosine receptor (A2Ar) in perturbed environments. We used the protein local optimization program, which builds thousands of loop candidates by sampling rotamer states of the loops' constituent amino acids. The candidate loops are discriminated between with our physics‐based, all‐atom energy function, which is based on the OPLS force field with implicit solvent and several correction terms. For relevant cases, explicit membrane molecules are included to simulate the effect of the membrane on loop structure. We also discuss a new sampling algorithm that divides phase space into different regions, allowing more thorough sampling of long loops that greatly improves results. In the first half of the paper, loop prediction is done with the GPCRs' transmembrane domains fixed in their crystallographic positions, while the loops are built one‐by‐one. Side chains near the loops are also in non‐native conformations. The second half describes a full homology model of β2Ar using β1Ar as a template. No information about the crystal structure of β2Ar was used to build this homology model. We are able to capture the architecture of short loops and the very long second extracellular loop, which is key for ligand binding. We believe this the first successful example of an RMSD validated, physics‐based loop prediction in the context of a GPCR homology model. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
    
The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to assess the efficiency of the ROSETTA method for ab initio protein structure prediction. For each protein, four models generated using the ROSETTA procedure were simulated for periods of between 5 and 400 nsec in explicit solvent, under identical conditions. In addition, the experimentally determined structure and the experimentally derived structure in which the side chains of all residues had been deleted and then regenerated using the WHATIF program were simulated and used as controls. A significant improvement in the deviation of the model structures from the experimentally determined structures was observed in several cases. In addition, it was found that in certain cases in which the experimental structure deviated rapidly from the initial structure in the simulations, indicating internal strain, the structures were more stable after regenerating the side-chain positions. Overall, the results indicate that molecular dynamics simulations on a tens to hundreds of nanoseconds time scale are useful for the refinement of homology or ab initio models of small to medium-size proteins.  相似文献   

12.
    
Current methods for antibody structure prediction rely on sequence homology to known structures. Although this strategy often yields accurate predictions, models can be stereo‐chemically strained. Here, we present a fully automated algorithm, called AbPredict, that disregards sequence homology, and instead uses a Monte Carlo search for low‐energy conformations built from backbone segments and rigid‐body orientations that appear in antibody molecular structures. We find cases where AbPredict selects accurate loop templates with sequence identity as low as 10%, whereas the template of highest sequence identity diverges substantially from the query's conformation. Accordingly, in several cases reported in the recent Antibody Modeling Assessment benchmark, AbPredict models were more accurate than those from any participant, and the models' stereo‐chemical quality was consistently high. Furthermore, in two blind cases provided to us by crystallographers prior to structure determination, the method achieved <1.5 Ångstrom overall backbone accuracy. Accurate modeling of unstrained antibody structures will enable design and engineering of improved binders for biomedical research directly from sequence. Proteins 2016; 85:30–38. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
    
This paper provides an unbiased comparison of four commercially available programs for loop sampling, Prime, Modeler, ICM, and Sybyl, each of which uses a different modeling protocol. The study assesses the quality of results and examines the relative strengths and weaknesses of each method. The set of loops to be modeled varied in length from 4-12 amino acids. The approaches used for loop modeling can be classified into two methodologies: ab initio loop generation (Modeler and Prime) and database searches (Sybyl and ICM). Comparison of the modeled loops to the native structures was used to determine the accuracy of each method. All of the protocols returned similar results for short loop lengths (four to six residues), but as loop length increased, the quality of the results varied among the programs. Prime generated loops with RMSDs <2.5 A for loops up to 10 residues, while the other three methods met the 2.5 A criteria at seven-residue loops. Additionally, the ability of the software to utilize disulfide bonds and X-ray crystal packing influenced the quality of the results. In the final analysis, the top-ranking loop from each program was rarely the loop with the lowest RMSD with respect to the native template, revealing a weakness in all programs to correctly rank the modeled loops.  相似文献   

14.
    
The success of the molecular‐replacement method for solving protein structures from experimental diffraction data depends on the availability of a suitable search model. Typically, this is derived from a previously solved structure, sometimes by homology modelling. Very recently, Baker, Read and coworkers have demonstrated a successful molecular‐replacement case based on an ab initio model generated by ROSETTA [Qian et al. (2007), Nature (London), 450 , 259–264]. In this contribution, a number of additional test cases in which ab initio models generated using modest computational resources give correct molecular‐replacement solutions are reported. Unsuccessful cases are also reported for comparison and the factors influencing the success of this route to structure solution are discussed.  相似文献   

15.
A tertiary structure model of the Abl-SH3 domain is predicted by using homology modeling techniques coupled to molecular dynamics simulations. Two template proteins were used, Fyn-SH3 and Spc-SH3. The refined model was extensively checked for errors using criteria based on stereochemistry, packing, solvation free-energy, accessible surface areas, and contact analyses. The different checking methods do not totally agree, as each one evaluates a different characteristic of protein structures. Several zones of the protein are more susceptible to incorporating errors. These include residues 13, 15, 35, 39, 45, 46, 50, and 60. An interesting finding is that the measurement of the Cα chirality correlated well with the rest of the criteria, suggesting that this parameter might be a good indicator of correct local conformation. Deviations of more than 4 degrees may be indicative of poor local structure. © 1994 Wiley-Liss, Inc.  相似文献   

16.
    
The most reliable methods for predicting protein structure are by way of homologous extension, using structural information from a closely related protein, or by \"threading\" through a set of predefined protein folds (\"inverse folding\"). Both sets of methods provide a model for the core of the protein--the structurally conserved secondary structures. Due to the large variability both in sequence and size of the loops that connect these secondary structures, they generally cannot be modeled using these techniques. Loop-closure algorithms are aimed at predicting loop structures, given their end-to-end distance. Various such algorithms have been described, and all have been tested by predicting the structure of a single loop in a known protein. In this paper we propose a method, which is based on the bond-scaling-relaxation loop-closure algorithm, for simultaneously predicting the structures of multiple loops, and demonstrate that, for two spatially close loops, simultaneous closure invariably leads to more accurate predictions than sequential closure. The accuracy of the predictions obtained for pairs of loops in the size range of 5-7 residues each is comparable to that obtained by other methods, when predicting the structures of single loops: the RMS deviations from the native conformations of various test cases modeled are approximately 0.6-1.7 A for backbone atoms and 1.1-3.3 A for all-atoms.  相似文献   

17.
    
The AlphaFold2 results in the 14th edition of Critical Assessment of Structure Prediction (CASP14) showed that accurate (low root-mean-square deviation) in silico models of protein structure domains are on the horizon, whether or not the protein is related to known structures through high-coverage sequence similarity. As highly accurate models become available, generated by harnessing the power of correlated mutations and deep learning, one of the aspects of structural biology to be impacted will be methods of phasing in crystallography. Here, the data from CASP14 are used to explore the prospects for changes in phasing methods, and in particular to explore the prospects for molecular-replacement phasing using in silico models.  相似文献   

18.
  总被引:27,自引:0,他引:27  
Comparative protein structure prediction is limited mostly by the errors in alignment and loop modeling. We describe here a new automated modeling technique that significantly improves the accuracy of loop predictions in protein structures. The positions of all nonhydrogen atoms of the loop are optimized in a fixed environment with respect to a pseudo energy function. The energy is a sum of many spatial restraints that include the bond length, bond angle, and improper dihedral angle terms from the CHARMM-22 force field, statistical preferences for the main-chain and side-chain dihedral angles, and statistical preferences for nonbonded atomic contacts that depend on the two atom types, their distance through space, and separation in sequence. The energy function is optimized with the method of conjugate gradients combined with molecular dynamics and simulated annealing. Typically, the predicted loop conformation corresponds to the lowest energy conformation among 500 independent optimizations. Predictions were made for 40 loops of known structure at each length from 1 to 14 residues. The accuracy of loop predictions is evaluated as a function of thoroughness of conformational sampling, loop length, and structural properties of native loops. When accuracy is measured by local superposition of the model on the native loop, 100, 90, and 30% of 4-, 8-, and 12-residue loop predictions, respectively, had <2 A RMSD error for the mainchain N, C(alpha), C, and O atoms; the average accuracies were 0.59 +/- 0.05, 1.16 +/- 0.10, and 2.61 +/- 0.16 A, respectively. To simulate real comparative modeling problems, the method was also evaluated by predicting loops of known structure in only approximately correct environments with errors typical of comparative modeling without misalignment. When the RMSD distortion of the main-chain stem atoms is 2.5 A, the average loop prediction error increased by 180, 25, and 3% for 4-, 8-, and 12-residue loops, respectively. The accuracy of the lowest energy prediction for a given loop can be estimated from the structural variability among a number of low energy predictions. The relative value of the present method is gauged by (1) comparing it with one of the most successful previously described methods, and (2) describing its accuracy in recent blind predictions of protein structure. Finally, it is shown that the average accuracy of prediction is limited primarily by the accuracy of the energy function rather than by the extent of conformational sampling.  相似文献   

19.
    
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.  相似文献   

20.
    
Ilya A. Vakser 《Proteomics》2023,23(17):2300219
Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein–protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein–protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号