首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our objective was to determine the minimum enteral intake level necessary to increase the protein accretion rate (PAR) in the neonatal small intestine. Seven-day-old piglets received an equal total daily intake of an elemental diet, with different proportions given enterally (0, 10%, 20%, 40%, 60%, 80%, and 100%). After 7 days, piglets were infused intravenously with [(2)H(3)]leucine for 6 h, and the fractional protein synthesis rate (FSR) was measured in the proximal (PJ) and distal jejunum (DJ) and the proximal (PI) and distal ileum (DI). The jejunal FSR increased from 45%/day to 130%/day between 0 and 60% enteral intake, whereas the FSR in the ileum was less sensitive to enteral intake level. At 0% enteral intake, PAR was significantly negative in the PJ, DJ, and PI (range -70 to -43 mg/day) and positive in the DI (49 mg/day), whereas intestinal protein balance occurred at 20% enteral intake. At 100% enteral intake, the PAR was greatest in the DI, even though the rates of protein turnover were 50% lower than in the PJ. We conclude that there is net intestinal protein loss at 0% enteral intake, protein balance at 20% enteral intake, and maximal intestinal protein accretion at 60% enteral intake.  相似文献   

2.
Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20-40 h), with or without a preceding 2- to 3-day TPN period (n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60-80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sow's colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43-170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.  相似文献   

3.
The production of endogenous prostaglandins by the gastrointestinal mucosa can be induced by many processes. Whether the commonly used technique of intraperitoneal injection alone can also induce significant endogenous prostaglandin-mediated mucosal injury induced in vivo by perfusion for 45 min with 5 mM chenodeoxycholic acid. 10 control rats received 1 ml/kg of normal saline subcutaneously on abdomen tree hours before exposure to chenodeoxycholic acid. Another group of 10 rats received 1 ml/kg of saline intraperitoneally before injury. Mucosal injury was assessed histologically by measuring villus tip epithelial cell denudation by computerized quantitative morphology. Injury was assessed functionally by measuring water and mannitol absorption from the lumen. To examine the role of endogenous prostaglandins in this phenomenon, the above experiment was repeated with 10 and 12 rats respectively by replacing the saline with 10 mg/kg injections of indomethacin. Intraperitoneal injection of saline reduced the average denudation/villus caused by chenodeoxycholic acid: Subcutaneous = 100.8 microns +/- 14.7 (SEM). Intraperitoneal = 65.1 +/- 6.4 (p less than 0.5). Parallel reductions were noted in the increase in water secretion and mannitol absorption caused by chenodeoxycholic acid. All of these differences were reversed by exchanging indomethacin for saline. This study suggests there exists a mechanism by which the simple act of performing an intraperitoneal injection induces endogenous intestinal mucosal protection. That this protection is negated by pretreatment with indomethacin suggests it is prostaglandin mediated.  相似文献   

4.
5.
Intestinal barrier plays key roles in maintaining intestinal homeostasis. Inflammation and oxidative damage can severely destroy the intestinal integrity of mammals. Chlorogenic acid (CGA) is a natural polyphenol present in human diet and plants, possessing potent antioxidant and anti-inflammatory activities. This study was conducted to investigate the protective effects of CGA and its molecular mechanisms on intestinal barrier function in a porcine model. Twenty-four weaned pigs were allotted to two groups and fed with a basal diet or a basal diet containing 1000 mg/kg CGA. The results showed that CGA decreased serum D-lactate and diamine oxidase levels, and enhanced the expression and localization of claudin-1 protein in apical intercellular region of small intestinal epithelium. Interestingly, CGA significantly decreased the mucosa histamine and tryptase contents, as well as the tryptase-positive mast cell counts. Moreover, the expression levels of critical inflammation molecules (interleukin-1β, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB) were down-regulated by CGA in jejunal and ileal mucosa. However, the expression levels of inflammation repressors (suppressor of cytokine signaling 1 and toll-interacting protein) were up-regulated by CGA. Importantly, CGA decreased the malondialdehyde content but elevated glutathione peroxidase and catalase content in duodenal and jejunal mucosa. The expression levels of critical molecules in antioxidant signaling (nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1) were elevated by CGA in duodenal and jejunal mucosa. These results suggested that CGA could ameliorate intestinal barrier disruption in weaned pigs, which might be mediated by suppressing the TLR4/NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway.  相似文献   

6.
Cholesterol catabolism to bile acids was stimulated in neonatal guinea pigs by feeding 1,11% cholestyramine (CT)-containing diet for 8 weeks. The animals were then switched to standard laboratory diet for an additional 4 weeks. At the end of the laboratory diet period: a) CT-pre-treated guinea pigs continued to excrete significantly higher (p<0.05) amounts of bile acids, b) the activity of hepatic 7α-hydroxylase was significantly elevated (p<0.01) in CT-pre-treated animals, and c) isolated hepatocytes from CT-pre-treated guinea pigs secreted significantly higher (p<0.05) amounts of bile acid when compared to controls during a 4-hour incubation. These data provide biochemical support for our contention that stimulation of cholesterol catabolism during neonatal life can have effects that persist into adult life.  相似文献   

7.
Effects of dietary conjugated linoleic acid (CLA, 1% mixed isomers) on n-6 long-chain polyunsaturated fatty acid (LCPUFA) oxidation and biosynthesis were investigated in liver and brain tissues of neonatal piglets. Fatty acid β-oxidation was measured in tissue homogenates using [1-14C]linoleic acid (LA) and -arachidonic acid (ARA) substrates, while fatty acid desaturation and elongation were traced using [U-13C]LA and GC-MS. Dietary CLA had no effect on fatty acid β-oxidation, but significantly decreased n-6 LCPUFA biosynthesis by inhibition of LA elongation and desaturation. Differences were noted between our 13C tracer assessment of desaturation/elongation and simple precursor-product indices computed from fatty acid composition data, indicating that caution should be exercised when employing the later. The inhibitory effects of CLA on elongation/desaturation were more pronounced in pigs fed a low fat diet (3% fat) than a high fat diet (25% fat). Direct elongation of linoleic acid to C20:2n-6 via the alternate elongation pathway might play an important role in n-6 LCPUFA synthesis because more than 40% of the synthetic products of [U-13C]LA accumulated in [13C]20:2n-6. Overall, the data show that dietary CLA shifted the distribution of the synthetic products of [U-13C]LA between elongation and desaturation in liver and decreased the total synthetic products of [U-13C]LA in brain by inhibiting LA elongation to C20:2n-6. The impact of CLA on brain LCPUFA metabolism of the developing neonate merits consideration and further investigation.  相似文献   

8.
目的分析新生儿胆汁淤积症患儿肠道菌群特征及其与分娩方式、喂养方式的关系。方法选择2018年6月至2019年6月我院收治的40例新生儿胆汁淤积症患儿作为观察组,选择同期入院的120例健康新生儿作为对照组,比较两组对象肠道菌群分布情况。各组对象进一步按不同喂养方式分为母乳喂养组和混合喂养组,按不同分娩方式分为阴道分娩组和剖宫产组,分析各组新生儿肠道菌群与分娩方式、喂养方式的相关性。结果观察组新生儿粪便中双歧杆菌、乳杆菌数量及双歧杆菌/大肠埃希菌值[(7.53±0.57)lg copies/g、(8.12±0.71)lg copies/g、1.06±0.18]明显少于对照组[(9.58±0.64)lg copies/g、(8.64±0.75)lg copies/g、1.39±0.22],大肠埃希菌数量[(7.28±0.85)lg copies/g]明显多于对照组[(6.81±0.63)lg copies/g]。观察组中,阴道分娩与剖宫产分娩患儿粪便中双歧杆菌、乳杆菌、大肠埃希菌数量及双歧杆菌/大肠埃希菌值差异均有统计学意义(P0.05)。观察组中,母乳喂养与混合喂养新生儿粪便中双歧杆菌、乳杆菌、大肠埃希菌数量及双歧杆菌/大肠埃希菌值差异均有统计学意义(P0.05)。结论新生儿胆汁淤积症患儿肠道菌群存在异常,且受到分娩方式和喂养方式的影响。  相似文献   

9.
10.
Loss of intestinal epithelial barrier function (EBF) is a major problem associated with total parenteral nutrition (TPN) administration. We have previously identified intestinal intraepithelial lymphocyte (IEL)-derived interferon-gamma (IFN-gamma) as a contributing factor to this barrier loss. The objective was to determine whether other IEL-derived cytokines may also contribute to intestinal epithelial barrier breakdown. C57BL6J male mice received TPN or enteral nutrition (control) for 7 days. IEL-derived interleukin-10 (IL-10) was then measured. A significant decline in IEL-derived IL-10 expression was seen with TPN administration, a cytokine that has been shown in vitro to maintain tight junction integrity. We hypothesized that this change in IEL-derived IL-10 expression could contribute to TPN-associated barrier loss. An additional group of mice was given exogenous recombinant IL-10. Ussing chamber experiments showed that EBF markedly declined in the TPN group. TPN resulted in a significant decrease of IEL-derived IL-10 expression. The expression of several tight junction molecules also decreased with TPN administration. Exogenous IL-10 administration in TPN mice significantly attenuated the TPN-associated decline in zonula occludens (ZO)-1, E-cadherin, and occludin expression, as well as a loss of intestinal barrier function. TPN administration led to a marked decline in IEL-derived IL-10 expression. This decline was coincident with a loss of intestinal EBF. As the decline was partially attenuated with the administration of exogenous IL-10, our findings suggest that loss of IL-10 may be a contributing mechanism to TPN-associated epithelial barrier loss.  相似文献   

11.
12.
The objective of this study was to examine the effect of glucocorticoid treatment in early neonatal life on plasma cholesterol and hepatic cholesterol 7 alpha-hydroxylase (CH-7A), the rate-limiting enzyme of bile acid biosynthesis from cholesterol, measured at weaning (Postnatal Day 20). Neonatal rat pups were injected subcutaneously with 5 micrograms of dexamethasone (DEXA) or vehicle (CON) for 5 days between Postnatal Days 4 and 8. On Postnatal Day 20, the animals were used for various studies. DEXA-treated pups weighed significantly less (P less than 0.001) than controls. Even though DEXA-treated animals had significantly smaller livers (P less than 0.001), microsomal protein per gram of liver was significantly greater (P less than 0.005) in the DEXA-treated animals. CH-7A activity (pmole/mg . min) was significantly lower (P less than 0.005) in the DEXA-treated animals (CON (4) 19.4 +/- 2.8; DEXA (4) 5.0 +/- 1.0). Plasma cholesterol (mg/100 ml) was significantly greater (P less than 0.005) in the DEXA-treated animals (CON (5) 179 +/- 7; DEXA (4) 223 +/- 5), a finding consistent with lower CH-7A activity in this group. Taurocholate absorption by in situ ileal loops in anesthetized rats was significantly greater in the DEXA-treated animals in agreement with the in vitro observations of Little and Lester. The basis for the reduced CH-7A activity in DEXA-treated pups is not known. It may be due in part to a new steady state in the enterohepatic circulation of bile acids resulting from a glucocorticoid-induced enhanced conservation of bile acids.  相似文献   

13.
Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.  相似文献   

14.
Bacillus piliformis infection (Tyzzer's disease) occurred in two young guinea pigs, causing unthriftiness and diarrhea which resulted in death. There was necrosis and inflammation of the ileum, cecum, and colon. Intestinal epithelial cells contained organisms resembling Bacillus piliformis. Spirochetes were found in the cecum and colon, mainly in crypts. Acute diarrhea occurred in another guinea pig which became cachetic and was killed. Histologically, large numbers of spirochetes were present in the wall of both the cecum and colon, and they were associated with severe necrosis and inflammation. Bacillus pilformis was not found in this animal.  相似文献   

15.
胆汁酸在人体的胆固醇代谢、脂质消化、宿主-微生物相互作用及通路调控等方面具有重要作用。大多数胆汁酸(95%)通过肝肠循环重回收,还有约5%作为结肠内细菌生物转化的基质。胆汁酸微生物转化中涉及的各种酶可通过肠道细菌培养而被验证,证明其有种属特异性。最近,生物信息学方法揭示了这些酶有多种亚型。因此,在胆汁酸转化中肠道菌群发挥重要的作用,微生物群落结构和功能对次级胆汁酸在胆汁酸池中的分布有深刻影响。研究认为胆汁酸和胆汁酸池的组成与几种疾病有关,包括炎症性肠病、代谢综合征和结直肠癌。最近,人们的重点放在肠道菌群如何改变胆汁酸进而导致或减轻某些疾病。本文总结了肠道菌群、胆汁酸生物转化和疾病状态之间的相互作用的研究进展。  相似文献   

16.
目的探讨粪菌移植(fecal microbiota transplantation,FMT)对非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)大鼠肠黏膜屏障的保护作用。方法健康雄性SD大鼠30只,随机分为3组:正常对照组(control group,C组)10只,予正常饮食;高脂模型组(model group,M组)10只、粪菌移植治疗组(treatment group,T组)10只,M组和T组均予高脂饮食。T组予粪菌液灌胃2 mL/次,隔日1次,粪菌液灌胃的前一天晚上及当天早上均予奥美拉唑镁肠溶片灌胃;C组及M组同时予奥美拉唑及生理盐水灌胃。喂养12周后实验结束,测定血中TG、ALT、AST水平;苏丹黑B染色观察肝脏病理学变化;取回肠末端肠组织行HE染色及扫描电镜观察肠黏膜结构变化。结果与M组大鼠相比,T组血清TG、ALT、AST水平降低,差异有统计学意义(均P0.05)。T组大鼠肝脏苏丹黑B染色可见肝细胞内脂肪沉积明显减少,脂肪变性程度较M组减轻。T组大鼠肠组织HE染色肠绒毛轻度水肿,排列较整齐、紧密。扫描电镜中可见T组大鼠肠绒毛形态较饱满,排列比较紧密,微绒毛之间的间隙变小。结论粪菌移植能改善肝功能,减轻肝脏脂肪变,降低肠道通透性,改善肠黏膜屏障功能。  相似文献   

17.
18.
Genistein has multiple biological activities in both humans and animals. However, a protective effect of genistein on Escherichia coli (E. coli)-induced intestinal mucosal barrier dysfunction remains unknown. In the present study, a total of 288 1-day-old male Arbor Acre broilers fed a corn-soybean basal diet unsupplemented or supplemented with 20 mg genistein/kg diet were subjected to E. coli serotype O78 (108 cfu per bird) infection or equal volume of sodium chloride at 19 days of age. Sera and tissue samples were collected 2 days after E. coli infection. Growth performance, index of immune-related organs, intestinal barrier permeability, protein level of inflammatory cytokines, sIgA, tight junction protein, and mRNA level of apoptotic genes in jejunum were determined. Mortality rate at 7 days post infection was recorded. The results showed that E. coli challenge led to a reduced average daily gain, a decreased thymus index, and bursal index in broilers, an increase of fluorescein isothiocyanate (FITC)-dextran in serum, and a decreased sIgA in jejunum. These effects were abrogated by genistein administration. Western blot results showed that E. coli infection led to increased protein level of claudin-1 and zonula occludens (ZO)-1, which was largely abolished by genistein. Moreover, E. coli infection resulted increased protein level of TNF-α and IL-6, enhanced mRNA level of Bax and caspase-3, as well as decreased mRNA level of Bcl-2 were abrogated by genistein in jujunum of broilers. In conclusion, the results indicate that genistein supplementation improves intestinal mucosal barrier function which is associated with a regulatory effect on tight junction proteins, sIgA, apoptosis, and secretion of inflammatory cytokines in jejunum of E. coli-challenged broilers.  相似文献   

19.
The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. Infusion of amino acids, but not insulin, reproduces the feeding-induced stimulation of liver protein synthesis. To determine whether amino acid-stimulated liver protein synthesis is independent of insulin in neonates, and to examine the role of amino acids and insulin in the regulation of translation initiation in neonatal liver, we performed pancreatic glucose-amino acid clamps in overnight-fasted 7-day-old pigs. Pigs (n = 9-12/group) were infused with insulin at 0, 10, 22, and 110 ng.kg(-0.66).min(-1) to achieve 0, 2, 6, and 30 microU/ml insulin, respectively. At each insulin dose, amino acids were maintained at fasting or fed levels or, in conjunction with the highest insulin dose, allowed to fall to below fasting levels. Insulin had no effect on the fractional rate of protein synthesis in liver. Amino acids increased fractional protein synthesis rates in liver at each dose of insulin, including the 0 microU/ml dose. There was a dose-response effect of amino acids on liver protein synthesis. Amino acids and insulin increased protein S6 kinase and 4E-binding protein 1 (4E-BP1) phosphorylation; however, only amino acids decreased formation of the inactive 4E-BPI.eukaryotic initiation factor-4E (eIF4E) complex. The results suggest that amino acids regulate liver protein synthesis in the neonate by modulating the availability of eIF4E for 48S ribosomal complex formation and that this response does not require insulin.  相似文献   

20.
The site of absorption of ascorbic acid by the small intestine was studied in vivo in guinea pigs, normal and hypophysectomized rats after oral application of 14C-ascorbic acid. A species-specific difference was revealed. The site of absorption in the guinea pig was located in the duodenal and proximal small intestinal wall, whereas the rat showed highest absorption in the ileum. Hypophysectomy in rats caused a shift of the absorption site from the ileum to the jejunum. No absorption was observed in the duodenum and ileum. A regulatory role of the pituitary gland in the absorption of ascorbic acid by the small intestine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号