首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pancreas is derived from a pool of multipotent progenitor cells (MPCs) that co-express Pdx-1 and Ptf1a. To more precisely define how the individual and combined loss of Pdx-1 and Ptf1a affects pancreatic MPC specification and differentiation we derived and studied mice bearing a novel Ptf1aYFP allele. While the expression of Pdx-1 and Ptf1a in pancreatic MPCs coincides between E9.5 and 12.5 the developmental phenotypes of Pdx-1 null and Pdx-1; Ptf1a double null mice are indistinguishable, and an early pancreatic bud is formed in both cases. This finding indicates that Pdx-1 is required in the foregut endoderm prior to Ptf1a for pancreatic MPC specification. We also found that Ptf1a is neither required for specification of Ngn3-positive endocrine progenitors nor differentiation of mature β-cells. In the absence of Pdx-1 Ngn3-positive cells were not observed after E9.5. Thus, in contrast to the deletion of Ptf1a, the loss of Pdx-1 precludes the sustained Ngn3-based derivation of endocrine progenitors from pancreatic MPCs. Taken together, these studies indicate that Pdx-1 and Ptf1a have distinct but interdependent functions during pancreatic MPC specification.  相似文献   

2.
3.
4.
5.
During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities.  相似文献   

6.
7.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

8.
9.
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced.  相似文献   

10.
The role of the Notch signaling members Notch1, Notch2 and Rbpj in exocrine pancreatic development is not well defined. We therefore analyzed conditional pancreas-specific Rbpj and combined Notch1/Notch2 knockout mice using Ptf1a(+/Cre(ex1)) mice crossed with floxed Rbpj or Notch1/Notch2 mice. Mice were analyzed at different embryonic stages for pancreatic exocrine and endocrine development. The absence of Rbpj in pancreatic progenitor cells impaired exocrine pancreas development up to embryonic day 18.5 and led to premature differentiation of pancreatic progenitors into endocrine cells. In Rbpj-deficient pancreata, amylase-expressing acini and islets formed during late embryonic and postnatal development, suggesting an essential role of Rbpj in early but not late development. Contrary to this severe phenotype, the concomitant inactivation of Notch1 and Notch2 only moderately disturbed the proliferation of pancreatic epithelial cells during early embryonic development, and did not inhibit pancreatic development. Our results show that, in contrast to Rbpj, Notch1 and Notch2 are not essential for pancreatogenesis. These data favor a Notch-independent role of Rbpj in the development of the exocrine pancreas. Furthermore, our findings suggest that in late stages of pancreatic development exocrine cell differentiation and maintenance are independent of Rbpj.  相似文献   

11.
The Notch-signaling pathway is known to be fundamental in controlling pancreas differentiation. We now report on using Cre-based fate mapping to indelibly label pancreatic Notch-responsive cells (PNCs) at larval stages and follow their fate in the adult pancreas. We show that the PNCs represent a population of progenitors that can differentiate to multiple lineages, including adult ductal cells, centroacinar cells (CACs) and endocrine cells. These endocrine cells include the insulin-producing β-cells. CACs are a functional component of the exocrine pancreas; however, our fate-mapping results indicate that CACs are more closely related to endocrine cells by lineage as they share a common progenitor. The majority of the exocrine pancreas consists of the secretory acinar cells; however, we only detect a very limited contribution of PNCs to acinar cells. To explain this observation we re-examined early events in pancreas formation. The pancreatic anlage that gives rise to the exocrine pancreas is located in the ventral gut endoderm (called the ventral bud). Ptf1a is a gene required for exocrine pancreas development and is first expressed as the ventral bud forms. We used transgenic marker lines to observe both the domain of cells expressing ptf1a and cells responding to Notch signaling. We do not detect any overlap in expression and demonstrate that the ventral bud consists of two cell populations: a ptf1-expressing domain and a Notch-responsive progenitor core. As pancreas organogenesis continues, the ventral bud derived PNCs align along the duct, remain multipotent and later in development differentiate to form secondary islets, ducts and CACs.  相似文献   

12.
13.
14.
Rathke's pouch contains progenitor cells that differentiate into the endocrine cells of the pituitary gland. It gives rise to gonadotrope, thyrotrope, somatotrope, corticotrope and lactotrope cells in the anterior lobe and the intermediate lobe melanotropes. Pituitary precursor cells express many members of the Notch signaling pathway including the downstream effector gene Hes1. We hypothesized that Hes1 regulates the timing of precursor differentiation and cell fate determination. To test this idea, we expressed Hes1 in differentiating pituitary cells and found that it can inhibit gonadotrope and thyrotrope differentiation. Pituitaries of Hes1 deficient mice have anterior lobe hypoplasia. All cells in the anterior lobe are specified and differentiate, but an early period of increased cell death and reduced proliferation causes reduced growth, evident as early as e14.5. In addition, cells within the intermediate lobe differentiate into somatotropes instead of melanotropes. Thus, the Hes1 repressor is essential for melanotrope specification. These results demonstrate that Notch signaling plays multiple roles in pituitary development, influencing precursor number, organ size, cell differentiation and ultimately cell fate.  相似文献   

15.
16.
17.
18.
19.
20.
Presenilin-1 regulates neuronal differentiation during neurogenesis   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号