首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steatotic livers are not used for transplantation because they have a reduced tolerance for ischemic events with reduced ATP levels and greater levels of cellular necrosis, which ultimately result in total organ failure. Mitochondrial uncoupling protein-2 (UCP2) is highly expressed in steatotic livers and may be responsible for liver sensitivity to ischemia through mitochondrial and ATP regulation. To test this hypothesis, experiments were conducted in lean and steatotic (ob/ob), wild-type, and UCP2 knock-out mice subjected to total warm hepatic ischemi-a/reperfusion. Although ob/ob UCP2 knock-out mice and ob/ob mice have a similar initial phenotype, ob/ob UCP2 knock-out animal survival was 83% when compared with 30% in ob/ob mice 24 h after reperfusion. Serum alanine aminotransferase concentrations and hepatocellular necrosis were decreased in the ob/ob UCP2 knock-out mice when compared with ob/ob mice subjected to ischemia. Liver ATP levels were increased in the ob/ob UCP2 knock-out animals after reperfusion when compared with the ob/ob mice but remained below the concentrations from lean livers. Lipid peroxidation (thiobarbituric acid-reactive substances) increased after reperfusion most significantly in the steatotic groups, but the increase was not affected by UCP2 deficiency. These results reveal that UCP2 expression is a critical factor, which sensitizes steatotic livers to ischemic injury, regulating liver ATP levels after ischemia and reperfusion.  相似文献   

2.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.  相似文献   

3.
Mitochondrial uncoupling protein 2 (UCP2) plays an important role in regulating energy metabolism. We previously reported that UCP2 expression in steatotic livers is increased which leads to diminished hepatic ATP stores and renders steatotic hepatocytes vulnerable to ischemic damage. In this study, reagents that inhibit the production of ATP were used to mimic an ischemic state in the liver in order to investigate the effects of decreased intracellular ATP levels on UCP2 expression in a murine hepatocyte cell line (HEP6-16). Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an oxidative phosphorylation uncoupler, was found to decrease intracellular ATP levels in a dose- and time-dependent manner. Relatively high concentrations of FCCP from 8 to 80 microM were required to reduce the intracellular concentration of ATP. The inhibitory effect of FCCP on intracellular ATP was significantly potentiated by 2-deoxy-D-glucose, an inhibitor of glycolysis that when administered alone had no negative effect on cellular ATP levels in mouse hepatocytes. Decreased intracellular ATP levels were accompanied by lower UCP2 mRNA expression. Upon removal of FCCP and/or 2-deoxy-D-glucose and reculture with normal medium, ATP and UCP2 mRNA levels returned to normal within a few hours. Mitochondrial membrane potential in HEP6-16 cells was dissipated by 80 microM FCCP but not 8 microM FCCP, suggesting that the downregulation of UCP2 expression by FCCP was not related to mitochondrial potential changes. Consequently, the in vitro manipulation of ATP stores is consistent with the in vivo observations associated with ischemia/reperfusion injury.  相似文献   

4.
Chronic exposure to elevated free fatty acids (lipotoxicity) induces uncoupling protein (UCP2) in the pancreatic beta-cell, and therefore a causal link between UCP2 and beta-cell defects associated with obesity may exist. Recently, we showed that lipid treatment in vivo and in vitro in UCP2(-/-) mice/islets does not result in any loss in beta-cell glucose sensitivity. We have now assessed the mechanism of maintained beta-cell function in UCP2(-/-) mice by exposing islets to 0.4 mM palmitate for 48 h. Palmitate treatment increased triglyceride concentrations in wild type (WT) but not UCP2(-/-) islets because of higher palmitate oxidation rates in the UCP2(-/-) islets. Dispersed beta-cells from the palmitate-exposed WT islets had reduced glucose-stimulated hyperpolarization of the mitochondrial membrane potential compared with both control WT and palmitate-exposed UCP2(-/-) beta-cells. The glucose-stimulated increases in the ATP/ADP ratio and cytosolic Ca2+ are attenuated in palmitate-treated WT but not UCP2(-/-) beta-cells. Exposure to palmitate reduced glucose-stimulated insulin secretion (GSIS) in WT islets, whereas UCP2(-/-) islets had enhanced GSIS. Overexpression of recombinant UCP2 but not enhanced green fluorescent protein in beta-cells resulted in a loss of glucose-stimulated hyperpolarization of the mitochondrial membrane potential and GSIS similar to that seen in WT islets exposed to palmitate. Reactive oxygen species (ROS) are known to increase the activity of UCP2. We showed that ROS levels were elevated in control UCP2(-/-) islets as compared with WT and UCP2(-/-) islets overexpressing UCP2 and that palmitate increased ROS in WT and UCP2(-/-) islets overexpressing UCP2 but not in UCP2(-/-) islets. Thus, UCP2(-/-) islets resisted the toxic effects of palmitate by maintaining glucose-dependent metabolism-secretion coupling. We propose that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(-/-) islets, such accumulation being a phenomenon associated with lipotoxicity.  相似文献   

5.
We have shown that intermittent interruption of immediate reflow at reperfusion (i.e., postconditioning) reduces infarct size in in vivo models after ischemia. Cardioprotection of postconditioning has been associated with attenuation of neutrophil-related events. However, it is unknown whether postconditioning before reoxygenation after hypoxia in cultured cardiomyocytes in the absence of neutrophils confers protection. This study tested the hypothesis that prevention of cardiomyocyte damage by hypoxic postconditioning (Postcon) is associated with a reduction in the generation of reactive oxygen species (ROS) and intracellular Ca(2+) overload. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h of hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned after the 3-h index hypoxia by three cycles of 5 min of reoxygenation and 5 min of rehypoxia applied before 6 h of reoxygenation. Relative to sham control and hypoxia alone, the generation of ROS (increased lucigenin-enhanced chemiluminescence, SOD-inhibitable cytochrome c reduction, and generation of hydrogen peroxide) was significantly augmented after immediate reoxygenation as was the production of malondialdehyde, a product of lipid peroxidation. Concomitant with these changes, intracellular and mitochondrial Ca(2+) concentrations, which were detected by fluorescent fluo-4 AM and X-rhod-1 AM staining, respectively, were elevated. Cell viability assessed by propidium iodide staining was decreased consistent with increased levels of lactate dehydrogenase after reoxygenation. Postcon treatment at the onset of reoxygenation reduced ROS generation and malondialdehyde concentration in media and attenuated cardiomyocyte death assessed by propidium iodide and lactate dehydrogenase. Postcon treatment was associated with a decrease in intracellular and mitochondrial Ca(2+) concentrations. These data suggest that Postcon treatment reduces reoxygenation-induced injury in cardiomyocytes and is potentially mediated by attenuation of ROS generation, lipid peroxidation, and intracellular and mitochondrial Ca(2+) overload.  相似文献   

6.
Steatosis increases the sensitivity of hepatocytes to hypoxic injury. Thus, this study was designed to elucidate the role of hypoxia-inducible factor-1α (HIF1α) in steatotic hepatocytes during hypoxia. AML12 hepatocytes and isolated rat hepatocytes were treated with a free fatty acid mixture of oleate and palmitate (2:1, 1 mM) for 18 h, which generated intrahepatocyte fat accumulation. The cells were then exposed to hypoxia (1% oxygen, 6-24 h). After hypoxia, a further increase in cellular fat accumulation was seen. In steatotic hepatocytes, a decreased HIF1α activation by hypoxia was observed. The capacity of these cells to express HIF1α-dependent genes responsible for the utilization of nutrients for energy was also impaired. This resulted in significantly lower intracellular ATP levels and greater cell death in steatotic hepatocytes compared with control hepatocytes. In contrast, overexpression of constitutively active HIF1α significantly increased cell viability as well as ATP and GLUT1 mRNA levels in steatotic hepatocytes under hypoxia. Hypoxia significantly enhanced HIF1α mRNA levels in control but not in steatotic hepatocytes. Concomitantly, an increase in oxidative stress was found in steatotic hepatocytes under hypoxic conditions compared with control cells. This included higher reactive oxygen species generation, lower cellular and nuclear GSH levels, and higher accumulation of 4-hydroxynonenal protein adducts. Hypoxia-mediated oxidative stress was accompanied by inactivation of basal nuclear factor-κB (NF-κB) DNA binding. Treatment with N-acetyl-l-cysteine, a reducing agent, improved NF-κB DNA-binding capacity and restored HIF1α induction. Conversely, overexpression of an NF-κB super-suppressor in control hepatocytes (IκBαΔN-transfected cells) resulted in complete inhibition of HIF1α expression, confirming that indeed NF-κB regulates HIF1α expression in hypoxic hepatocytes. In conclusion, hypoxia in combination with hepatic steatosis was shown to promote augmented oxidative stress, leading to NF-κB inactivation and impaired HIF1α induction and thereby increased susceptibility to hypoxic injury.  相似文献   

7.
Hypoxia, reactive oxygen, and cell injury   总被引:2,自引:0,他引:2  
Hypoxia usually decreases the formation of reactive oxygen species by oxidases and by autoxidation of components of cellular electron transfer pathways and of quinoid compounds such as menadione. In the case of menadione reactive oxygen species are liberated to a significant extent only at non-physiologically high oxygen partial pressures (PO2). At physiological and hypoxic PO2 values electron shuttling of menadione in the mitochondrial respiratory chain predominates. In contrast, lipid peroxidation induced by halogenated alkanes, such as carbon tetrachloride, in liver leads to an increase in the formation of reactive oxygen and thus in cell injury under hypoxic conditions. Reactive oxygen species may also be generated during reoxygenation of a previously hypoxic tissue. Based on experiments with isolated hepatocytes a three-zone-model of liver injury due to hypoxia and reoxygenation is presented; 1) a zone where the cells die by hypoxia; 2) a zone where the cells are destroyed upon reoxygenation, presumably mediated by an increase in the cellular ATP content; and 3) a zone where cell injury occurs upon reoxygenation, mediated by reactive oxygen species possibly liberated by xanthine oxidase.  相似文献   

8.
Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.  相似文献   

9.
Incubation of isolated rat hepatocytes with 0.1 mM iron nitrilotriacetic acid (FeNTA) caused a rapid rise in lipid peroxidation followed by a substantial increase in trypan blue staining and lactate dehydrogenase release, but did not affect the protein and non-protein thiol content of the cells. Hepatocyte death was preceded by the decline of mitochondrial membrane potential, as assayed by rhodamine 123 uptake, and by the depletion of cellular ATP. Chelation of extracellular Ca2+ by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid or inhibition of Ca2+ cycling within the mitochondria by LaCl3 or cyclosporin A did not prevent the decline of rhodamine 123 uptake. On the other hand, a dramatic increase in the conjugated diene content was observed in mitochondria isolated from FeNTA-treated hepatocytes. Oxidative damage of mitochondria was accompanied by the leakage of matrix enzymes glutamic oxalacetic aminotransferase (GOT) and glutamate dehydrogenase (GLDH). The addition of the antioxidant N,N'-diphenylphenylene diamine (DPPD) completely prevented GOT and GLDH leakage, inhibition of rhodamine 123 uptake, and ATP depletion induced by FeNTA, indicating that Ca(2+)-independent alterations of mitochondrial membrane permeability consequent to lipid peroxidation were responsible for the loss of mitochondrial membrane potential. DPPD addition also protected against hepatocyte death. Similarly hepatocytes prepared from fed rats were found to be more resistant than those obtained from starved rats toward ATP depletion and cell death caused by FeNTA, in spite of undergoing a comparable mitochondrial injury. A similar protection was also observed following fructose supplementation of hepatocytes isolated from starved rats, indicating that the decline of ATP was critical for the development of FeNTA toxicity. From these results it was concluded that FeNTA-induced peroxidation of mitochondrial membranes impaired the electrochemical potential of these organelles and led to ATP depletion which was critical for the development of irreversible cell injury.  相似文献   

10.
Mitochondrial electron transport inhibitors induced two distinct pathways for acute cell death: lipid peroxidation-dependent and -independent in isolated rat hepatocytes. The toxic effects of mitochondrial complex I and II inhibitors, rotenone (ROT) and thenoyltrifluoroacetone (TTFA), respectively, were dependent on oxidative stress and lipid peroxidation, while cell death induced by inhibitors of complexes III and IV, antimycin A (AA) and cyanide (CN), respectively, was caused by MMP collapse and loss of cellular ATP. Accordingly, cellular and mitochondrial antioxidant depletion or supplementation, in general, resulted in a dramatic potentiation or prevention, respectively, of toxic injury induced by complex I and II inhibitors, with little or no effect on complex III and IV inhibitor-induced toxicity. ROT-induced oxidative stress was prevented by the addition of d-alpha-tocopheryl succinate (TS) but surprisingly TS did not afford hepatocytes protection against TTFA-induced oxidative damage. TS treatment prevented ROT-induced mitochondrial lipid hydroperoxide formation but had no effect on the loss of mitochondrial GSH or cellular ATP, suggesting a mitochondrial lipid peroxidation-mediated mechanism for ROT-induced acute cell death. In contrast, only fructose treatment provided excellent cytoprotection against AA- and CN-induced toxicity. Our findings indicate that complex III and IV inhibitors cause a rapid and severe depletion of cellular ATP content resulting in acute cell death that is dependent on cellular energy impairment but not lipid peroxidation. In contrast, inhibitors of mitochondrial complex I or II moderately deplete cellular ATP levels and thus cause acute cell death via a lipid peroxidation pathway.  相似文献   

11.
Mitochondrial involvement in non-alcoholic steatohepatitis   总被引:1,自引:0,他引:1  
Non-alcoholic steatohepatitis (NASH) is an increasing recognized condition that may progress to end-stage liver disease. There are consistent evidences that mitochondrial dysfunction plays a central role in NASH whatever its origin. Mitochondria are the key controller of fatty acids removal and this is part of an intensive gene program that modifies hepatocytes to counteract the excessive fat storage. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of ROS that in turn trigger lipid peroxidation, cytokines release and cell death. In this review we briefly recall the role of mitochondria in fat metabolism and energy homeostasis and focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. We suggest that mitochondrial respiratory chain, UCP2 and redox balance cooperate in a common pathway that permits to set down the mitochondrial redox pressure, limits the risk of oxidative damage, and allows the maximal rate of fat removal. When the environmental conditions change and high energy supply occurs, hepatocytes are unable to replace their ATP store and steatosis progress to NASH and cirrhosis. The beneficial effects of some drugs on mitochondrial function are also discussed.  相似文献   

12.

Background

Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO).

Methodology and Findings

To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection.

Conclusions

In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.  相似文献   

13.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

14.
Mitochondrial adaptations to obesity-related oxidant stress   总被引:15,自引:0,他引:15  
It is not known why viable hepatocytes in fatty livers are vulnerable to necrosis, but associated mitochondrial alterations suggest that reactive oxygen species (ROS) production may be increased. Although the mechanisms for ROS-mediated lethality are not well understood, increased mitochondrial ROS generation often precedes cell death, and hence, might promote hepatocyte necrosis. The aim of this study is to determine if liver mitochondria from obese mice with fatty hepatocytes actually produce increased ROS. Secondary objectives are to identify potential mechanisms for ROS increases and to evaluate whether ROS increase uncoupling protein (UCP)-2, a mitochondrial protein that promotes ATP depletion and necrosis. Compared to mitochondria from normal livers, fatty liver mitochondria have a 50% reduction in cytochrome c content and produce superoxide anion at a greater rate. They also contain 25% more GSH and demonstrate 70% greater manganese superoxide dismutase activity and a 35% reduction in glutathione peroxidase activity. Mitochondrial generation of H(2)O(2) is increased by 200% and the activities of enzymes that detoxify H(2)O(2) in other cellular compartments are abnormal. Cytosolic glutathione peroxidase and catalase activities are 42 and 153% of control values, respectively. These changes in the production and detoxification of mitochondrial ROS are associated with a 300% increase in the mitochondrial content of UCP-2, although the content of beta-1 ATP synthase, a constitutive mitochondrial membrane protein, is unaffected. Supporting the possibility that mitochondrial ROS induce UCP-2 in fatty hepatocytes, a mitochondrial redox cycling agent that increases mitochondrial ROS production upregulates UCP-2 mRNAs in primary cultures of normal rat hepatocytes by 300%. Thus, ROS production is increased in fatty liver mitochondria. This may result from chronic apoptotic stress and provoke adaptations, including increases in UCP-2, that potentiate necrosis.  相似文献   

15.
A novel uncoupling protein, UCP5, has recently been characterized as a functional mitochondrial uncoupler in Drosophila. Here we demonstrate that UCP5 knockout (UCP5KO) flies are highly sensitive to starvation stress, a phenotype that can be reversed by ectopic neuronal expression of UCP5. UCP5KO flies live longer than controls on low-calorie diets, have a decreased level of fertility, and gain less weight than controls on high-calorie diets. However, isolated mitochondria from UCP5KO flies display the same respiration patterns as controls. Furthermore, total ATP levels in both UCP5KO and control flies are comparable. UCP5KO flies have a lower body composition of sugars, and during starvation stress their triglyceride reserves are depleted more rapidly than controls. Taken together, these data indicate that UCP5 is important to maintain metabolic homeostasis in the fly. We hypothesize that UCP5 influences hormonal control of metabolism.  相似文献   

16.
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.  相似文献   

17.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

18.
Uncoupling proteins (UCPs), members of mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. UCPs can modulate the tightness of coupling between mitochondrial respiration and ATP synthesis. A physiological function of the first described UCP, UCP1 or termogenin, present in mitochondria of mammalian brown adipose tissues is well established. UCP1 plays a role in nonshivering thermogenesis in mammals. The widespread presence of UCPs in eukaryotes, in non-thermogenic tissues of animals, plants and in unicellular organisms implies that these proteins may elicit other functions than thermogenesis. However, the physiological functions of UCP1 homologues are still under debate. They can regulate energy metabolism through modulation of the electrochemical proton gradient and production of ROS. Functional activation of UCPs is proposed to decrease ROS production. Moreover, products of lipid peroxidation can activate UCPs and promote feedback down-regulation of mitochondrial ROS production.  相似文献   

19.
Uncoupling protein 2 (UCP2) uncouples respiration from oxidative phosphorylation and may contribute to obesity through effects on energy metabolism. Because basal metabolic rate is decreased in obesity, UCP2 expression is predicted to be reduced. Paradoxically, hepatic expression of UCP2 mRNA is increased in genetically obese (ob/ob) mice. In situ hybridization and immunohistochemical analysis of ob/ob livers demonstrate that UCP2 mRNA and protein expression are increased in hepatocytes, which do not express UCP2 in lean mice. Mitochondria isolated from ob/ob livers exhibit an increased rate of H+ leak which partially dissipates the mitochondrial membrane potential when the rate of electron transport is suppressed. In addition, hepatic ATP stores are reduced and these livers are more vulnerable to necrosis after transient hepatic ischemia. Hence, hepatocytes adapt to obesity by up-regulating UCP2. However, because this decreases the efficiency of energy trapping, the cells become vulnerable to ATP depletion when energy needs increase acutely.  相似文献   

20.
We consecutively observed lipid peroxidation and cell membrane damage under the condition of hypoxia‐reoxygenation (H/R) in cells and analyzed their mechanisms by using electron transport inhibitors and an antioxidant. In H/R experiments, lipid peroxidation and cell membrane damage were observed during the hypoxia phase. In the reoxygenation phase, lipid peroxidation stopped, while cell membrane damage did not. An antioxidant, n‐acetylcystein (NAC), and potassium cyanide (KCN) inhibited lipid peroxidation and cell membrane damage, while rotenone did not inhibit either of them. Although antimycin A did not inhibit lipid peroxidation, it inhibited cell membrane damage during the hypoxia phase but not during the reoxygenation phase. These results suggested that lipid peroxidation can affect cell membrane damage as a trigger during the hypoxia phase and the generation of oxidative stress can vary depending on the inhibition locations in the electron transport system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号