首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin‐like protease on the cell surface followed by the formation of a donut‐shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1‐dimensional 13C‐edited 1H NMR that low pH induces dissociation of the Von‐Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon‐13 labeled, 2‐fluorohistidine labeled CMG2, consistent with studies showing that protonation of His‐121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface.  相似文献   

2.
Protective antigen (PA), the receptor-binding component of anthrax toxin, heptamerizes and inserts into the endosomal membrane at acidic pH, forming a pore that mediates translocation of the enzymic components of the toxin to the cytosol. When the heptameric pre-insertion form of PA (the prepore) is acidified in solution, it rapidly loses the ability to insert into membranes. To maximize insertion into model membranes, we examined two ways to bind the protein to large unilamellar vesicles (LUV). One involved attaching a His tag to the von Willebrand factor A domain of one of the PA receptors, ANTXR2, and using this protein as a bridge to bind PA to LUV containing a nickel-chelating lipid. The other involved using a His tag fused to the C terminus of PA to bind the protein directly to LUV containing the same lipid. Both ways enhanced pore formation at pH 5.0 strongly and about equally, as measured by the release of K+. Controls showed that pore formation in this system faithfully reproduced that in vivo. We also showed that binding unmodified ANTXR2 von Willebrand factor A to the prepore in solution enhanced its pore forming activity by slowing its inactivation at acidic pH. These findings indicate that an important role of PA receptors is to promote partitioning of PA into the bilayer by maintaining the prepore close to the target membrane and presumably in the optimal orientation as it undergoes the acidic pH-dependent conformational transition to the pore.  相似文献   

3.
Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA63, oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α1 loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process.  相似文献   

4.
Domain 4 of the anthrax protective antigen (PA) plays a key role in cellular receptor recognition as well as in pH-dependent pore formation. We present here the 1.95 Å crystal structure of domain 4, which adopts a fold that is identical to that observed in the full-length protein. We have also investigated the structural properties of the isolated domain 4 as a function of pH, as well as the pH-dependence on binding to the von Willebrand factor A domain of capillary morphogenesis protein 2 (CMG2). Our results provide evidence that the isolated domain 4 maintains structure and interactions with CMG2 at pH 5, a pH that is known to cause release of the receptor on conversion of the heptameric prepore (PA63)7 to a membrane-spanning pore. Our results suggest that receptor release is not driven solely by a pH-induced unfolding of domain 4.  相似文献   

5.
Cholesterol Dependent Cytolysins (CDCs) are important bacterial virulence factors that form large (200–300 Å) membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM) experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4). Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3) and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs.  相似文献   

6.
C J Miller  J L Elliott  R J Collier 《Biochemistry》1999,38(32):10432-10441
PA(63), the active 63 kDa form of anthrax protective antigen, forms a heptameric ring-shaped oligomer that is believed to represent a precursor of the membrane pore formed by this protein. When maintained at pH >/=8.0, this "prepore" dissociated to monomeric subunits upon treatment with SDS at room temperature, but treatment at pH 相似文献   

7.
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of β barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric β barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical β barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric β barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC.  相似文献   

8.
The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C2221 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent Kd of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD+ -dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria.  相似文献   

9.
Proteolytic activation of the protective antigen (PA) component of anthrax toxin allows it to self-associate into a ring-shaped homoheptamer, [PA(63)](7), which can bind the enzymatic components lethal factor (LF) and edema factor (EF). [PA(63)](7) is a pore-precursor (prepore), and under the low-pH conditions of the endosome, it forms a transmembrane pore that allows LF and EF to enter the cytosol. PA was labeled with donor and acceptor fluorescent dyes, and F?rster resonance energy transfer was used to measure the assembly and disassembly kinetics of the prepore complex in solution. The dissociation rate constant for [PA(63)](7) was 1 x 10(-)(6) s(-)(1) (t(1/2) approximately 7 days). In contrast, a ternary complex containing the PA-binding domain of LF (LF(N)) bound to a PA(63) dimer composed of two nonoligomerizing mutants dissociated rapidly (t(1/2) approximately 1 min). Thus, the substantial decrease in the rate of disassembly of [PA(63)](7) relative to the ternary complex is due to the cooperative interactions among neighboring subunits in the heptameric ring. Low concentrations of LF(N) promoted assembly of the prepore from proteolytically activated PA, whereas high concentrations inhibited assembly of both the prepore and the ternary complex. A self-assembly scheme of anthrax toxin complexes is proposed.  相似文献   

10.

Background

A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2β2–2β3 loops of the heptameric precursor to generate a 14-strand transmembrane β barrel.

Methodology/Principal Findings

We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the β barrel, and a third one, F324, that lies part way up the barrel.

Conclusions/Significance

Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.  相似文献   

11.
Smedley JG  Sharp JS  Kuhn JF  Tomer KB 《Biochemistry》2008,47(40):10694-10704
The protective antigen (PA) component of the anthrax toxin (ATx) plays an essential role in the pathogenesis of the bioterrorism bacterium Bacillus anthracis. After oligomerization on the cell surface and docking of lethal factor and/or edema factor, PA is internalized and undergoes a conformational change when exposed to the low pH of the endosome to form a membrane-penetrating pore. While the structure of the PA prepore has been determined, precise structural information regarding the pore state remains lacking. Oxidative protein footprinting (OPF) can provide dynamic structural information about a protein complex through analysis of amino acid oxidation both before and after a conformational change. In this study, PA at pH 7.5 and 5.5 was exposed to hydroxyl radicals generated by ionizing radiation. Mass spectrometry was then used to both identify and quantitate the extent of oxidation of differentially modified residues. Several residues were found to be more readily oxidized at pH 7.5, most of which clustered toward the bottom plane of the prepore heptamer. Two amino acids had greater oxidation rates at pH 5.5, both found on the outer periphery of the prepore. When the OPF results were mapped to a current computational model of the pore, the accessibilities of some residues were consistent with their modeled positions in the pore (i.e., Y688 and V619/I620), while data for other residues (W346 and M350) appeared to conflict with the model. The results from this study illustrate the utility of OPF in generating empirical structural information for yet undetermined structures and offering opportunities for refinement for models thereof.  相似文献   

12.
Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex.  相似文献   

13.
Clostridium perfringens epsilon toxin (ETX) rapidly kills MDCK II cells at 37°C, but not 4°C. The current study shows that, in MDCK II cells, ETX binds and forms an oligomeric complex equally well at 37°C and 4°C but only forms a pore at 37°C. However, the complex formed in MDCK cells treated with ETX at 4°C has the potential to form an active pore, since shifting those cells to 37°C results in rapid cytotoxicity. Those results suggested that the block in pore formation at 4°C involves temperature-related trapping of ETX in a prepore intermediate on the MDCK II cell plasma membrane surface. Evidence supporting this hypothesis was obtained when the ETX complex in MDCK II cells was shown to be more susceptible to pronase degradation when formed at 4°C vs. 37°C; this result is consistent with ETX complex formed at 4°C remaining present in an exposed prepore on the membrane surface, while the ETX prepore complex formed at 37°C is unaccessible to pronase because it has inserted into the plasma membrane to form an active pore. In addition, the ETX complex rapidly dissociated from MDCK II cells at 4°C, but not 37°C; this result is consistent with the ETX complex being resistant to dissociation at 37°C because it has inserted into membranes, while the ETX prepore readily dissociates from cells at 4°C because it remains on the membrane surface. These results support the identification of a prepore stage in ETX action and suggest a revised model for ETX cytotoxicity, i) ETX binds to an unidentified receptor, ii) ETX oligomerizes into a prepore on the membrane surface, and iii) the prepore inserts into membranes, in a temperature-sensitive manner, to form an active pore.  相似文献   

14.
Proteolytically activated Protective Antigen (PA) moiety of anthrax toxin self‐associates to form a heptameric ring‐shaped oligomer (the prepore). Acidic pH within the endosome converts the prepore to a pore that serves as a passageway for the toxin's enzymatic moieties to cross the endosomal membrane. Prepore is stable in solution under mildly basic conditions, and lowering the pH promotes a conformational transition to an insoluble pore‐like state. N‐tetradecylphosphocholine (FOS14) was the only detergent among 110 tested that prevented aggregation without dissociating the multimer into its constituent subunits. FOS14 maintained the heptamers as monodisperse, insertion‐competent 440‐kDa particles, which formed channels in planar phospholipid bilayers with the same unitary conductance and ability to translocate a model substrate protein as channels formed in the absence of detergent. Electron paramagnetic resonance analysis detected pore‐like conformational changes within PA on solubilization with FOS14, and electron micrograph images of FOS14‐solubilized pore showed an extended, mushroom‐shaped structure. Circular dichroïsm measurements revealed an increase in α helix and a decrease in β structure in pore formation. Spectral changes caused by a deletion mutation support the hypothesis that the 2β2‐2β3 loop transforms into the transmembrane segment of the β‐barrel stem of the pore. Changes caused by selected point mutations indicate that the transition to α structure is dependent on residues of the luminal 2β11‐2β12 loop that are known to affect pore formation. Stabilizing the PA pore in solution with FOS14 may facilitate further structural analysis and a more detailed understanding of the folding pathway by which the pore is formed.  相似文献   

15.
The enzymatic moieties of anthrax toxin enter the cytosol of mammalian cells via a pore in the endosomal membrane formed by the protective antigen (PA) moiety. Pore formation involves an acidic pH-induced conformational rearrangement of a heptameric precursor (the prepore), in which the seven 2beta2-2beta3 loops interact to generate a 14-strand transmembrane beta-barrel. To investigate this model in vivo, we labeled PA with the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) at cysteine residues introduced into the 2beta2-2beta3 loop. Each labeled PA was bound to CHO cells, and NBD fluorescence was monitored over time in stirred cell suspensions or by confocal microscopy. A strong increase was observed with NBD at positions 305, 307, 309, and 311, sites where side chains are predicted to face the bilayer, and little change was seen at residues 304, 306, 308, 310, and 312, sites where side chains are predicted to face the pore lumen. The increase at position 305 was inhibited by membrane-restricted quenchers, low temperature, or various reagents known to affect toxin action. Of the 24 NBD attachment sites examined, all but three gave results qualitatively consistent with the beta-barrel model. Besides supporting the beta-barrel model of membrane insertion, our results describe the time course of insertion and identify PA residues where NBD gives a strong signal upon membrane insertion in vivo.  相似文献   

16.
Heptameric pores formed by the protective antigen (PA) moiety of anthrax toxin translocate the intracellular effector moieties of the toxin across the endosomal membrane to the cytosol of mammalian cells. We devised a protocol to characterize the effects of individual mutations in a single subunit of heptameric PA prepores (pore precursors) or pores. We prepared monomeric PA containing a test mutation plus an innocuous Cys‐replacement mutation at a second residue (Lys563, located on the external surface of the prepore). The introduced Cys was biotinylated, and the protein was allowed to cooligomerize with a 20‐fold excess of wild‐type PA. Finally, biotinylated prepores were freed from wild‐type prepores by avidin affinity chromatography. For the proof of principle, we examined single‐subunit mutations of Asp425 and Phe427, two residues where Ala replacements have been shown to cause strong inhibitory effects. The single‐subunit D425A mutation inhibited pore formation by >104 and abrogated activity of PA almost completely in our standard cytotoxicity assay. The single‐subunit F427A mutation caused ~100‐fold inhibition in the cytotoxicity assay, and this effect was shown to result from a combination of strong inhibition of translocation and smaller effects on pore formation and ligand affinity. Our results show definitively that replacing a single residue in one subunit of the heptameric PA prepore can inhibit the transport activity of the oligomer almost completely—and by different mechanisms, depending on the specific residue mutated.  相似文献   

17.
Zhang S  Cunningham K  Collier RJ 《Biochemistry》2004,43(20):6339-6343
Heptameric anthrax protective antigen (termed prepore), which assembles at the mammalian cell surface, competitively binds edema factor (EF) and/or lethal factor (LF). It then transports them to an acidic intracellular compartment and mediates their translocation across the membrane to the cytosol. Steric constraints limit to three the number of molecules of EF and/or LF that can bind simultaneously to prepore. To determine whether the number of ligand molecules bound per heptamer affects the efficiency of translocation, we measured the low-pH-triggered translocation of the radiolabeled protective antigen (PA(63))-binding domain of LF ((35)S-LF(N)) across the plasma membrane of CHO-K1 cells as a function of the degree of saturation of the prepore. The fraction translocated remained constant at approximately 0.4 as (35)S-LF(N) was varied from nil through saturating concentrations. The same constant value was observed when we held (35)S-LF(N) at a saturating concentration and varied the number of functional ligand sites per prepore by changing the ratio of wild-type PA to a ligand-binding mutant. Thus, prepore containing only a single ligand-binding site is capable of translocating its cargo as efficiently as one containing multiple binding sites. The results as a whole imply that heptamers with one, two, or three ligands bound translocate their ligands with the same efficiency, indicating that each ligand molecule is translocated independently from the others.  相似文献   

18.
We have visualized by cryo‐electron microscopy (cryo‐EM) the complex of the anthrax protective antigen (PA) translocon and the N‐terminal domain of anthrax lethal factor (LFN) inserted into a nanodisc model lipid bilayer. We have determined the structure of this complex at a nominal resolution of 16 Å by single‐particle analysis and three‐dimensional reconstruction. Consistent with our previous analysis of negatively stained unliganded PA, the translocon comprises a globular structure (cap) separated from the nanodisc bilayer by a narrow stalk that terminates in a transmembrane channel (incompletely distinguished in this reconstruction). The globular cap is larger than the unliganded PA pore, probably due to distortions introduced in the previous negatively stained structures. The cap exhibits larger, more distinct radial protrusions, previously identified with PA domain three, fitted by elements of the NMFF PA prepore crystal structure. The presence of LFN, though not distinguished due to the seven‐fold averaging used in the reconstruction, contributes to the distinct protrusions on the cap rim volume distal to the membrane. Furthermore, the lumen of the cap region is less resolved than the unliganded negatively stained PA, due to the low contrast obtained in our images of this specimen. Presence of the LFN extended helix and N terminal unstructured regions may also contribute to this additional internal density within the interior of the cap. Initial NMFF fitting of the cryoEM‐defined PA pore cap region positions the Phe clamp region of the PA pore translocon directly above an internal vestibule, consistent with its role in toxin translocation.  相似文献   

19.
The action of anthrax toxin relies in part upon the ability of the protective antigen (PA) moiety to form a heptameric pore in the endosomal membrane, providing a portal for entry of the enzymic moieties of the toxin into the cytosol. Pore formation is dependent on a conformational change in the heptameric prepore that occurs in the neutral to mildly acidic pH range, and it has been hypothesized that protonation of one or more histidine residues triggers this transition. To test this hypothesis, we used biosynthetic methods to incorporate the unnatural amino acid analogue 2-fluorohistidine (2-FHis) into PA. 2-FHis is isosteric with histidine but resists protonation at physiological pH values due to a dramatically reduced side-chain pKa ( approximately 1). We found that 2-FHis-labeled PA was biologically inactive, as judged by its inability to deliver a model intracellular effector, LFN-DTA, to the cytosol of CHO-K1 cells. However, whereas 2-FHis blocked a conformational transition in the full-length PA83 protein in the pH 5-6 range, the pH dependence of prepore-to-pore conversion of (PA63)7 was unchanged from the wild-type protein, implying that this conversion is not dependent on His protonation. Consistent with this result, the labeled, trypsin-activated PA was able to permeabilize liposomes to K+ and retained pore-forming activity in planar phospholipid bilayers. The pores in planar bilayers were incapable, however, of translocating a model ligand in response to a transmembrane pH gradient or elevated voltage. The results indicate that protonation of residues other than His, presumably Glu and/or Asp side chains, triggers pore formation in vitro, but His residues are nonetheless important for PA functioning in vivo.  相似文献   

20.
The complement membrane attack complex (MAC) forms transmembrane pores in pathogen membranes. The first step in MAC assembly is cleavage of C5 to generate metastable C5b, which forms a stable complex with C6, termed C5b-6. C5b-6 initiates pore formation via the sequential recruitment of homologous proteins: C7, C8, and 12–18 copies of C9, each of which comprises a central MAC-perforin domain flanked by auxiliary domains. We recently proposed a model of pore assembly, in which the auxiliary domains play key roles, both in stabilizing the closed conformation of the protomers and in driving the sequential opening of the MAC-perforin β-sheet of each new recruit to the growing pore. Here, we describe an atomic model of C5b-6 at 4.2 Å resolution. We show that C5b provides four interfaces for the auxiliary domains of C6. The largest interface is created by the insertion of an interdomain linker from C6 into a hydrophobic groove created by a major reorganization of the α-helical domain of C5b. In combination with the rigid body docking of N-terminal elements of both proteins, C5b becomes locked into a stable conformation. Both C6 auxiliary domains flanking the linker pack tightly against C5b. The net effect is to induce the clockwise rigid body rotation of four auxiliary domains, as well as the opening/twisting of the central β-sheet of C6, in the directions predicted by our model to activate or prime C6 for the subsequent steps in MAC assembly. The complex also suggests novel small molecule strategies for modulating pathological MAC assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号