首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RALES, EPHESUS and redox   总被引:4,自引:0,他引:4  
In RALES, low doses of the mineralocorticoid receptor (MR) antagonist spironolactone, added to standard of care for severe heart failure, improved survival by 30% and lowered hospitalization by 35%. Animal studies with the selective MR antagonist eplerenone have similarly shown MR blockade to prevent the cerebral, renal and coronary vascular inflammatory response to elevated aldosterone levels. There is now general acceptance that aldosterone concentrations inappropriate for salt status have major deleterious effects on the cardiovascular system.

In many instances, however (e.g. Randomized Aldactone Evaluation Study (RALES), EPHESUS) aldosterone levels are normal and salt status unremarkable and yet MR blockade has unquestioned benefits. In these instances, there is increasing evidence that coronary and cardiac MR are activated by normal circulating cortisol levels, in the cellular context of generation of reactive oxygen species (ROS) and/or alteration in intracellular redox status.

MR in VSMC and cardiomyocytes are normally predominantly occupied by cortisol in tonic inhibitory mode. Blockade of 11β hydroxysteroid dehydrogenase type II (11βHSD2) or ROS generation both serve to activate cortisol–MR complexes, thus mimicking the effects of mineralocorticoid/salt imbalance on blood vessels and the heart. In RALES and EPHESUS, it is likely that the antagonists are blocking normal levels of cortisol, not aldosterone, from activating MR in the context of tissue damage and ROS generation. If this is the case, MR antagonists may be of wide therapeutic potential in cardiovascular disease and not confined to those characterized by aldosterone/salt excess. Finally, the pathophysiologic roles of always-occupied MR in ‘unprotected’ tissues such as cardiomyocytes or neurons in response to altered intracellular redox status remain to be explored.  相似文献   


2.
3.
In recent years understanding of the role of aldosterone has expanded beyond the known classic effects of promoting renal sodium retention and potassium and magnesium loss. It is now well documented that aldosterone causes myocardial and perivascular fibrosis, blocks the myocardial uptake of norepinephrine, and increases plasminogen activator inhibitor levels. In conjunction with angiotensin II, aldosterone causes vascular damage, endothelial dysfunction, and decreased vascular compliance. Therefore, the renin-angiotensin-aldosterone system (RAAS) plays a major role in the development of both hypertension and heart failure and is therefore, a key target for therapeutic interventions. Commonly prescribed medications for control of hypertension and congestive heart failure are inhibitors of the RAAS, including angiotensin converting enzyme inhibitors (ACE-I) and Angiotensin II (A-II) receptor antagonists. There is a well-documented increase in aldosterone levels that occurs over several months during chronic treatment with an ACE-I or A-II receptor antagonist. Such suppression of circulating aldosterone however, is transient, as exemplified by the term "escape" used to describe the phenomenon. This rebound of aldosterone even occurs when patients receive both an ACE-I and A-II receptor antagonist. In addition, ACE-I and A-II receptor antagonists are less effective in controlling BP in the estimated 60% of hypertensive patients who are salt (volume) sensitive and more prone to hypertension-associated morbidity such as black patients and type 2 diabetics. Thus chronic and complete blockade of aldosterone action requires an aldosterone receptor antagonist. The "Randomized Aldactone Evaluation Study" (RALES) trial results in patients with severe heart failure NYHA class III or IV and a left ventricular ejection fraction of no more than 35 percent showed that administration of a sub-hemodynamic dose of spironolactone (25 mg a day) as an add on therapy to ACE-I plus standard treatment resulted in a significant mortality reduction due both to decreased death from progressive heart failure and sudden cardiac death. These findings support the pivotal role of aldosterone in the pathophysiology of progressive heart failure. Although it is an effective antialdosterone agent, widespread use of spironolactone in humans is limited by its tendency to produce undesirable sexual side effects. At standard doses, impotence and gynaecomastia can be induced in men, whereas pre-menopausal women may experience menstrual disturbances. Data on a selective aldosterone receptor antagonist, eplerenone, appear promising for the effective blockade of aldosterone and its harmful effects without the sexual disturbances of spironolactone. Recently Eplerenone was successfully introduced for the treatment of hypertension and heart failure. Growing number of experimental studies are finding a broader role for Aldosterone in driving the pathophysiology of both heart failure and hypertension. When added to conventional therapy aldosterone receptor blockers show benefits which are in addition to those conferred by ACE-I and/or AII receptor blockers.  相似文献   

4.
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. The glucocorticoid cortisol binds the MR with equivalent affinity to that of the mineralocorticoids aldosterone and deoxycorticosterone. In nonepithelial tissues, including the myocardium, which do not express the cortisol-inactivating enzyme 11β hydroxysteroid dehydrogenase 2, cortisol has been implicated in the activation of MR. The mechanisms for ligand- and tissue-specific actions of the MR are undefined. Over the past decade, it has become clear that coregulator proteins are critical for nuclear receptor-mediated gene expression. A subset of these coregulators may confer specificity to MR-mediated responses. To evaluate whether different physiological ligands can induce distinct MR conformations that underlie differential coregulator recruitment and ligand-specific gene regulation, we utilized phage display technology to screen 10(8) 19mer peptides for their interaction with the MR in the presence of agonist ligands. We identified ligand-selective MR-interacting peptides that acted as potent antagonists of MR-mediated transactivation. This represents a novel mechanism of MR antagonism that may be manipulated in the rational design of a ligand- or tissue-selective MR modulator to treat diseases like heart failure without side effects such as hyperkalemia.  相似文献   

5.
Mineralocorticoid receptors (MR) have equal affinity for the mineralocorticoid aldosterone, and the physiological glucocorticoids cortisol and corticosterone. In epithelial tissues in vivo, MR are protected against glucocorticoid occupancy by the enzyme 11β-hydroxysteroid dehydrogenase, allowing access by the lower circulating levels of the physiological mineralocorticoid aldosterone. In non-epithelial tissues, including the heart and most areas of the central nervous system, MR are not so protected, and their physiological ligand is cortisol/corticosterone. Intracerebroventricular infusion studies have shown that aldosterone occupancy of such unprotected circumventricular MR is necessary for mineralocorticoid hypertension, and the hypertensinogenic effects of peripherally infused aldosterone can be blocked by intracerebroventricular infusion of the MR antagonist RU28318. Prolonged (8 weeks) administration of mineralocorticoids to salt-loaded rats has been shown to be followed by hypertension, cardiac hypertrophy and cardiac fibrosis. Whether the hypertrophy and fibrosis reflect primary effects of aldosterone via cardiac MR, or effects secondary to occupancy of protected, epithelial MR, remains to be determined, as does the mechanism of action of salt loading in this model of mineralocorticoid hypertension.  相似文献   

6.
Cardiac aldosterone levels have not been evaluated in diastolic heart failure (DHF), and its roles in this type of heart failure remain unclear. This study aimed to detect cardiac aldosterone by use of a liquid chromatographic-mass spectrometric method and to assess the effects of mineralocorticoid receptor blockade on hypertensive DHF. Dahl salt-sensitive rats fed 8% NaCl diet from 7 wk (hypertensive DHF model) were divided at 13 wk into three groups: those treated with subdepressor doses of eplerenone (12.5 or 40 mg x kg(-1) x day(-1)) and an untreated group. Dahl salt-sensitive rats fed 0.3% NaCl diet served as controls. Cardiac aldosterone was detected in the DHF rats but not in the control rats, with increased ventricular levels of mineralocorticoid receptor. Cardiac levels of 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone were not different between the control and DHF rats, but the tissue level of corticosterone that has an affinity to mineralocorticoid receptor was 1,000 times as high as that of aldosterone. Aldosterone synthase activity and CYP11B2 mRNA were undetectable in the ventricular tissue of the DHF rats. Administration of eplerenone attenuated ventricular hypertrophy, ventricular fibrosis, myocardial stiffening, and relaxation abnormality, leading to the prevention of overt DHF. In summary, the myocardial aldosterone level increased in the DHF rats. However, its value was extremely low compared with corticosterone, and no evidence for enhancement of intrinsic myocardial aldosterone production was found. The upregulation of mineralocorticoid receptor may play a central role in the pathogenesis of DHF, and blockade of mineralocorticoid receptor is likely an effective therapeutic regimen of DHF.  相似文献   

7.
In recent years, understanding of the role of aldosterone has expanded beyond the known classic effects of promoting renal sodium retention and potassium and magnesium loss. It is now well documented that aldosterone causes myocardial and perivascular fibrosis, blocks the myocardial uptake of norepinephrine, and increases plasminogen activator inhibitor levels. In conjunction with angiotensin II, aldosterone causes vascular damage, endothelial dysfunction, and decreased vascular compliance. Thus, the renin-angiotensin-aldosterone system (RAAS) plays a major role in the development of both hypertension and heart failure and is, therefore, a key target for therapeutic interventions. Commonly prescribed medications for control of hypertension and congestive heart failure are inhibitors of the RAAS, including angiotensin converting enzyme inhibitors (ACE-Is) and angiotensin II (A-II) receptor antagonists. A well-documented increase in aldosterone levels occurs over several months during chronic treatment with an ACE-I or an A-II receptor antagonist. Such suppression of circulating aldosterone, however, is transient, as exemplified by the term “escape” used to describe the phenomenon. This rebound of aldosterone even occurs when patients receive both an ACE-I and an A-II receptor antagonist. In addition, ACE-Is and A-II receptor antagonists are less effective in controlling blood pressure in the estimated 60% of hypertensive patients who are salt- (volume-) sensitive and more prone to hypertension-associated morbidity, such as black patients and type 2 diabetics. Thus, chronic and complete blockade of aldosterone action requires an aldosterone receptor antagonist. The Randomized Aldactone Evaluation Study (RALES) trial results in patients with severe heart failure (New York Heart Association class III or IV) and a left ventricular ejection fraction of no more than 35% showed that administration of a subhemodynamic dose of spironolactone (25 mg/day) as an add-on therapy to ACE-Is plus standard treatment resulted in a significant mortality reduction due to decreases in both death from progressive heart failure and sudden cardiac death. These findings support the pivotal role of aldosterone in the pathophysiology of progressive heart failure. Although it is an effective antialdosterone agent, widespread use of spironolactone in humans is limited by its tendency to produce undesirable sexual side effects. At standard doses, impotence and gynecomastia can be induced in men, whereas premenopausal women may experience menstrual disturbances. Data on a selective aldosterone receptor antagonist, eplerenone, show that it appears promising for the effective blockade of aldosterone and its harmful effects without the sexual disturbances of spironolactone. Recently, eplerenone was successfully introduced for the treatment of hypertension and heart failure. A growing number of experimental studies are finding a broader role for aldosterone in driving the pathophysiology of both heart failure and hypertension. When added to conventional therapy, aldosterone receptor blockers show benefits in addition to those conferred by ACE-Is and/or A-II receptor blockers.  相似文献   

8.
Spironolactone and eplerenone are widely used as mineralocorticoid antagonists. Spironolactone has several nonspecific actions including inhibition of androgen receptor and steroid hormone biosynthesis. While studies have shown that eplerenone does not exhibit nonspecific actions on androgen receptor, its effects on steroid hormone production have not been reported. Herein, the effects of eplerenone (0.1-30 microM) and spironolactone (0.1-30 microM) on steroid production were examined in human adrenocortical H295R cells. Spironolactone inhibited basal production of cortisol (91%) and aldosterone (53%). Treatment of H295R cells with angiotensin II (Ang II) for 24 h increased aldosterone production by 11-fold. Spironolactone inhibited Ang II stimulation of aldosterone production by 80%. Addition of pregnenolone increased aldosterone (9-fold) and cortisol (3-fold) production. Spironolactone inhibited pregnenolone metabolism to aldosterone (67%) and cortisol (74%). The inhibitory effects of spironolactone occurred at concentrations far higher than those needed to block mineralocorticoid receptor, suggesting an action directly on the enzymes involved in steroid production. In contrast, eplerenone did not inhibit basal, Ang II, forskolin, pregnenolone-stimulated cortisol, or aldosterone production. Together, these data demonstrate that opposed to spironolactone, pharmacologic concentrations of eplerenone do not inhibit adrenal cell aldosterone or cortisol production.  相似文献   

9.
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.  相似文献   

10.
To investigate the possible direct effect of two aldosterone antagonists (Canrenoate-K and Prorenoate-K) upon mineralocorticoid biosynthesis a perifusion system technique has been developed. Frog interrenal tissue was selected for its ability to secrete huge amounts of aldosterone (twice as much as corticosterone in resting conditions). Throughout the experiment, secretion of aldosterone was measured every ten minutes by means of a sensitive and highly specific radioimmunoassay method. Increasing concentrations of both Canrenoate-K and Prorenoate-K (ranging from 10(-4)M to 10(-3)M) caused a dose-related inhibition of aldosterone output. At a dose of 3.16 x 10(-4)M, Prorenoate-K appeared to be somewhat more potent (57.8% inhibition) than Canrenoate-K (47.8% inhibition). Infusion of both Canrenoate-K and Prorenoate-K at a dose of 5 x 10(-4)M during 1 or 2 hours induced a similar sharp decrease in mineralocorticoid secretion. Thus, it appears that Canrenoate-K and Prorenoate-K beside their well known effects at renal tubular receptor sites do also inhibit aldosterone biosynthesis. These results indicate that in vivo administration of aldosterone antagonists may first involve a transient decrease in aldosterone secretion. Furthermore, they suggest that mineralocorticoid biosynthesis might be regulated by a short loop feedback mechanism.  相似文献   

11.
The mineralocorticoid aldosterone is a key regulator of blood pressure, fluid and electrolyte homeostasis, and acts via the mineralocorticoid receptor (MR). In recent years, an increasing number of studies revealed deleterious effects of aldosterone via its receptor. Especially in patients with primary hyperaldosteronism (PHA) a significant higher risk of developing cardiovascular comorbidities and comortalities was reported. Also renal insufficiency is clearly increased in patients with PHA indicating a role of aldosterone and the MR in the pathogenesis of renal injury. It has been shown that aldosterone in combination with an elevated salt intake, leads to renal inflammation, fibrosis, podocyte injury, and mesangial cell proliferation. This review focuses on the current knowledge of aldosterone effects in the kidney and highlights this topic from 2 perspectives: from clinical medicine and from experimental studies.  相似文献   

12.
Nongenomic action of aldosterone has been observed in many cell types which often are different from the classic target tissues for mineralocorticoid action, such as vascular cells. As judged from their time scale and insensitivity toward inhibitors of protein synthesis, effects are not mediated by the classic mineralocorticoid receptor pathway. Here we summarize studies on rapid in vitro aldosterone effects, e.g. ion fluxes, and second messengers involved therein. Furthermore, several clinical studies on in vivo aldosterone action have shown rapid effects on cardiovascular parameters, among them baroreflex and vascular resistance. Taken together with the beneficial effect of aldosterone antagonism in heart failure patients that was demonstrated in the Randomized Aldactone Evaluation Study (RALES), aldosterone may be an equally important factor of the renin-angiotensin-aldosterone system in cardiovascular pathogenesis.  相似文献   

13.
Aldosterone and the vascular system   总被引:1,自引:0,他引:1  
Aldosterone can act in different tissues exerting physiological and pathological effects. At the vascular level, aldosterone affects endothelial function since administration of aldosterone impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorate relaxation to acetylcholine in models of both hypertension and atherosclerosis and in patients with heart failure. A reduction in nitric oxide levels seems to be the main mechanism underlying this effect due to a reduction in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone is a pro-inflammatory factor that can participate in the vascular inflammatory process associated with different pathologies including hypertension through activation of the NFkappaB system, which mediates the vascular production of different cytokines. This mineralocorticoid also participates in the vascular remodeling observed in hypertensive rats since the administration of eplerenone improved the media-to-lumen ratio in these animals. This effect seems to be due to an increase in extracellular matrix. In summary, aldosterone through mineralocorticoid receptors can participate in the vascular damage associated with different pathologies including hypertension through its prooxidant, pro-inflammatory and profibrotic effects that triggered endothelial dysfunction, an inflammatory process and vascular remodeling.  相似文献   

14.
de Resende MM  Kauser K  Mill JG 《Life sciences》2006,78(26):3066-3073
Myocardial infarction (MI) activates the renin-angiotensin system in the heart and increases local production of aldosterone. This hormone may increase reactive fibrosis in the myocardium favoring heart failure development. To elucidate the potential contribution of aldosterone to cardiac remodeling following MI, we evaluated the expression of mineralocorticoid receptors (MCR) in the left ventricle (LV) and kidney of rats after MI and captopril treatment. MI was induced by ligation of the coronary artery in Wistar rats, which were separated into (1) sham-operated group, (2) MI group, (3) MI-captopril treated group (cap, 50 mg kg(-1) day(-1)). One month later angiotensin converting enzyme (ACE) activity was assayed in the plasma, LV and kidney. Cardiac and renal angiotensin II (Ang II) levels were determined by ELISA and MCR mRNA expression and protein were measured by Taqman RT-PCR and Western blot, respectively. Cardiac MCR mRNA and protein levels increased nearly by 80% after MI and Cap treatment normalized cardiac MCR protein and mRNA expression. Kidney MCR expression was not affected. ACE activity increased 34% in the plasma and 83% in the LV after MI. This increase was prevented by Cap. Ang II concentration increased 225% in the LV and 193% in kidney, which was partially attenuated by Cap. Our data demonstrate upregulation of MCR in the heart following MI what may facilitate the effects of aldosterone in the ventricular remodeling process. ACE inhibitors may reduce reactive fibrosis not only by decreasing Ang II production but also by attenuating the aldosterone-signaling pathway by decreasing the expression of MCR receptors.  相似文献   

15.
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor beta(1) (TGF-beta(1)) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-beta(1) or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-beta(1) expression and cellular ROS. The effects on PAI-1, TGF-beta(1) and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.  相似文献   

16.
17.
Excess and deficit of growth hormone (GH) both affect cardiac architecture as well as its function. To date, experimental and clinical studies have reported that GH has an inotropic effect on animal and human heart, however, it remains controversial whether GH is applicable to the treatment for the patients with chronic heart failure. Also, the mechanism by which GH exerts these biological effects on the heart is not well understood. In this study, we attempted to specify the genes regulated by GH in the heart of spontaneous dwarf rat using a microarray analysis. We found that soluble forms of guanylate cyclase, cofilin1, and thymosin beta4 mRNA were up-regulated in the heart by GH treatment. On the other hand, acyl-CoA synthetase, aldosterone receptor, myosin regulatory light chain, troponin T, laminA, and beta-actin mRNA were down-regulated. These results suggest GH regulates essential molecules that regulate structural, contractile, remodeling, and regenerative functions. Collectively, our data indicate a new integrative understanding for the biological effects of GH on cardiac function.  相似文献   

18.
19.
Identification of unknown hormones has traditionally involved utilizing a bioassay to initially detect the hormone and to follow its purification. However, radioreceptor assays may be more useful for this purpose by offering greater sensitivity and precision. A mineralocorticoid radioreceptor assay has been developed for use in conjunction with chromatographic separation of a urinary extract to detect the presence of unknown urinary mineralocorticoids. This assay utilizes competition of the unknown steroid and aldosterone for rat renal cytoplasmic mineralocorticoid receptors to enable mineralocorticoid quantitation in aldosterone equivalents. This assay provides 100 fold increase in sensitivity and a significant increase in precision over the commonly used adrenalectomized rat bioassay. The mineralocorticoid radioreceptor assay has been utilized to assay mineralocorticoid activity in chromatographic fractions of a urinary extract from rats with regenerating adrenals. A large area of mineralocorticoid radioreceptor activity has been identified which possibly represents an unknown mineralocorticoid contributing to the etiology of adrenal regeneration hypertension. This assay is applicable to other syndromes of postulated unknown mineralocorticoid excess, such as human low renin essential hypertension. In addition, similar radioreceptor assays are applicable for the initial detection of any type of hormone activity and for the subsequent purification and identification of this hormone.  相似文献   

20.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号