首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.  相似文献   

2.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

3.
Polar growth of root hairs is critical for plant survival and requires fine‐tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S‐acyl transferases (PATs), mediating the S‐acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site‐directed mutagenesis and genetic analysis with related root‐hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S‐acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild‐type but not an enzyme‐inactive PAT4. Membrane‐associated ROP2 was significantly reduced in pat4, similar to S‐acylation‐deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4‐mediated S‐acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.  相似文献   

4.
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip‐focused Ca2+‐gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide‐gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip‐focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin‐binding and Ca2+‐permeable channels organize a robust tip‐focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium‐signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.  相似文献   

5.
Ma  Zhong  Walk  Thomas C.  Marcus  Andrew  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):221-235
Low phosphorus availability regulates root hair growth in Arabidopsis by (1) increasing root hair length, (2) increasing root hair density, (3) decreasing the distance between the root tip and the point at which root hairs begin to emerge, and (4) increasing the number of epidermal cell files that bear hairs (trichoblasts). The coordinated regulation of these traits by phosphorus availability prompted us to speculate that they are synergistic, that is, that they have greater adaptive value in combination than they do in isolation. In this study, we explored this concept using a geometric model to evaluate the effect of varying root hair length (short, medium, and long), density (0, 24, 48, 72, 96, and 120 root hairs per mm of root length), tip to first root hair distance (0.5, 1, 2, and 4 mm), and number of trichoblast files (8 vs. 12) on phosphorus acquisition efficiency (PAE) in Arabidopsis. SimRoot, a dynamic three-dimensional geometric model of root growth and architecture, was used to simulate the growth of Arabidopsis roots with contrasting root hair parameters at three values of phosphorus diffusion coefficient (D e=1×10–7, 1×10–8, and 1×10–9 cm2 s–1) over time (20, 40, and 60 h). Depzone, a program that dynamically models nutrient diffusion to roots, was employed to estimate PAE and competition among root hairs. As D e decreased from 1×10–7 to 1×10–9 cm2 s–1, roots with longer root hairs and higher root hair densities had greater PAE than those with shorter and less dense root hairs. At D e=1×10–9 cm2 s–1, the PAE of root hairs at any given density was in the order of long hairs > medium length hairs > short hairs, and the maximum PAE occurred at density = 96 hairs mm–1 for both long and medium length hairs. This was due to greater competition among root hairs when they were short and dense. Competition over time decreased differences in PAE due to density, but the effect of length was maintained, as there was less competition among long hairs than short hairs. At high D e(1×10–7 cm2 s–1), competition among root hairs was greatest among long hairs and lowest among short hairs, and competition increased with increasing root hair densities. This led to a decrease in PAE as root hair length and density increased. PAE was also affected by the tip to first root hair distance. At low D e values, decreasing tip to first root hair distance increased PAE of long hairs more than that of short hairs, whereas at high D e values, decreasing tip to first root hair distance increased PAE of root hairs at low density but decreased PAE of long hairs at very high density. Our models confirmed the benefits of increasing root hair density by increasing the number of trichoblast files rather than decreasing the trichoblast length. The combined effects of all four root hair traits on phosphorus acquisition was 371% greater than their additive effects, demonstrating substantial morphological synergy. In conclusion, our data support the hypothesis that the responses of root hairs to low phosphorus availability are synergistic, which may account for their coordinated regulation.  相似文献   

6.
7.
Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild‐type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase‐null mutants exhibited nitrate‐dependent root hair phenotypes comparable with wild‐type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate‐induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.  相似文献   

8.
In this study, confocal ratio analysis was used to image the relationship between cytoplasmic free calcium concentration ([Ca2+]c) and the development of root hairs of Arabidopsis thaliana. Although a localized change in [Ca2+]c that preceded or predicted the site of root hair initiation could not be detected, once initiated the majority of emerging root hairs showed an elevated [Ca2+]c (>1 μM) in their apical cytoplasm, compared with 100– 200 nM in the rest of the cell. These emerging root hairs then moved into a 3–5 h phase of sustained elongation during which they showed variable growth rates. Root hairs that were rapidly elongating exhibited a highly localized, elevated [Ca2+]c at the tip. Non-growing root hairs did not exhibit the [Ca2+]c gradient. The rhd-2 mutant, which is defective in sustained root hair growth, showed an altered [Ca2+]c distribution compared with wild-type. These results implicate [Ca2+]c in regulating the tip growth process. Treatment of elongating wild-type root hairs with the Ca2+ channel blocker verapamil (50 μM) caused dissipation of the elevated [Ca2+]c at the tip and cessation of growth, suggesting a requirement for Ca2+ channel activity at the root hair tip to maintain growth. Manganese treatment also preferentially quenched Indo-1 fluorescence in the apical cytoplasm of the root hair. As manganese is thought to enter cells through Ca2+-permeable channels, this result also suggests increased Ca2+ channel activity at the tip of the growing hair. Taken together, these data suggest that although Ca2+ does not trigger the initiation of root hairs, Ca2+ influx at the tip of the root hair leads to an elevated [Ca2+]c that may be required to sustain root hair elongation.  相似文献   

9.
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.  相似文献   

10.
Growth of plant cells involves tight regulation of the cytoskeleton and vesicle trafficking by processes including the action of the ROP small G proteins together with pH-modulated cell wall modifications. Yet, little is known on how these systems are coordinated. In a paper recently published in Plant Cell and Environment1 we show that ROPs/RACs function synergistically with NH4NO3-modulated pH fluctuations to regulate root hair growth. Root hairs expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. The highly polarized secretion at the apex is maintained by a complex network of factors including the spatial organization of the actin cytoskeleton, tip-focused ion gradients and by small G proteins. Expression of constitutively active ROP mutants disrupts polar growth, inducing the formation of swollen root hairs. Root hairs are also known to elongate in an oscillating manner, which is correlated with oscillatory H+ fluxes at the tip. Our analysis shows that root hair elongation in wild type plants and swelling in transgenic plants expressing a constitutively active ROP11 (rop11CA) is sensitive to the presence of NH4+ at concentrations higher than 1 mM and on NO3. The NH4+ and NO3 ions did not affect the localization of ROP in the membrane but modulated pH fluctuations at the root hair tip. Actin organization and reactive oxygen species distribution were abnormal in rop11CA root hairs but were similar to wild-type root hairs when seedlings were grown on medium lacking NH4+ and/or NO3. These observations suggest that the nitrogen source-modulated pH fluctuations may function synergistically with ROP regulated signaling during root hair tip growth. Interestingly, under certain growth conditions, expression of rop11CA suppressed ammonium toxicity, similar to auxin resistant mutants. In this short review we discuss these findings and their implications.Key words: ROP, RAC, nitrogen, root hair, cell polarity, ammoniumIn Arabidopsis, root hairs grow out at the basal, rootward region (closer to root tip) of specialized root epidermal cells and expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. Tip growth is facilitated by Rho of Plants (ROP)-regulated processes such as maintenance of longitudinally-oriented actin cables in the shank of the root hair that are required for myosin-mediated organelle transport through the cytoplasm. ROPs also play a role in sustaining fine F-actin structures at the root hair tip, which promote the transport of secretory vesicles to sites of their fusion with the plasma membrane.2,3 In addition, the polar growth of root hairs involves an oscillatory tip-focused Ca2+ gradient4 and tip-localized reactive oxygen species (ROS).5 Tip growth is also associated with oscillatory fluxes of H+ at the apex that correlate with the periodicity of growth.6,7 These oscillations in extracellular pH and ROS have been shown to modulate tip growth and are predicted to act in a coordinated and complementary mode to regulate root hair elongation. Growth accelerates following reduction of apoplastic pH and slows upon apoplastic ROS increase and a coincident pH increase.7ROPs are small G proteins that localize to the plasma membrane at the apex of growing root hairs, where they activate a range of downstream pathways required for tip growth.8,9 ROP activity is regulated by its cycling between a GTP-bound, active and GDP-bound, inactive state. Ectopic expression of constitutively active mutants of ROPs (dominant mutations in conserved residues that abolish the GTPase activity) depolarizes the growth of root hairs.810 Downstream pathways activated by such ROP GTPases include the regulation of cytoskeletal dynamics and vesicular trafficking, production of ROS, maintenance of intracellular Ca2+ gradients and accumulation of signaling lipids, features all related to the regulation of apical growth.11,12 For example, ectopic expression of constitutively active ROP11 (Atrop11CA) depolarizes root hair growth, leading to the formation of swollen root hairs. This bulging root hair phenotype was associated with altered actin organization and inhibition of endocytosis.10It is well known that root hair development is highly plastic and regulated by environmental signals.13,14 Yet, despite the known function of ROP GTPases and their regulatory proteins in root hair growth there is no data in the literature describing the relationship between ROP signaling and environmental factors in this process. Our results1 show that induction of root hair swelling by rop11CA occurs only under specific growth conditions, indicating that there is an interplay between ROP activity and the external environment, particularly nitrogen supply. We demonstrated that high external concentrations of ammonium are essential for the induction of depolarized root hair growth and activation of downstream pathways by rop11CA. Depletion of ammonium did not affect the membrane localization and expression of GFP-rop11CA, implying that NH4+ was required in addition to ROP activity to cause root hair swelling. In agreement with this idea, normal actin organization and ROS localization were detected in rop11CA root hairs when NH4+ was depleted, suggesting that ammonium functions downstream of, or in parallel to ROP signaling (Fig. 1).Open in a separate windowFigure 1A model for regulation of root hair tip growth by ROP GTPases and pH oscillations dependent on nitrogen supply. GTP bound ROPs activate downstream effectors which directly affect actin organization, vesicular trafficking and localized ROS production as well as indirectly affecting the localization of membrane proteins involved in ion/proton fluxes. High concentrations of nitrogen ions in the growth medium increase pH oscillations at the apex of growing root hairs. In turn downstream ROP effectors sense the changes in pH and adjust their function accordingly. pH oscillations affect tip growth independent of ROPs via changes of wall pH and possibly through additional unknown factors. Dashed lines indicate that these effects were not confirmed experimentally.Plants can absorb and use various forms of nitrogen from soils, primarily the inorganic ions ammonium and nitrate. The concentrations of these ions are highly heterogeneous around the plant and can vary across several orders of magnitude among different soils and as a result of seasonal changes.15 Thus, plants would be expected to display highly plastic, N-regulated developmental responses and to employ a range of nitrogen uptake transport systems to optimize exploitation of local N resources. Transport systems that mediate NH4 fluxes across the plasma membrane of root cells are divided into two categories: high affinity transport systems (HATS) that mediate uptake from relatively dilute solutions at relatively low rates and low affinity transport systems (LATS) that operate at high rates and higher external concentrations.16 The HATS are plasma membrane localized NH4+-specific transporters (AMTs) that are most likely proton-coupled and their expression and function are repressed at external ammonium concentrations of 1 mM or higher.1719 In contrast, ammonium uptake by LATS is believed to take place through non-specific cation channels.17,20 The NH4+ concentration in the 0.5× Murashige Skoog (MS) medium is 10.3 mM, exceeding by an order of magnitude the concentration at which the high affinity NH4+ uptake system is repressed. The root hair swelling in Atrop11CA plants and inhibition of root hair elongation in wild type plants occurred primarily at external ammonium concentrations greater than 1 mM, and thus is most likely associated with uptake by the LATS.As noted above, root hair elongation is associated with oscillations of cytoplasmic and apoplastic pH that have been linked to growth control. Simultaneous fluorescence ratio imaging of internal and external pH revealed that application of 10 mM NH4NO3 enhanced the amplitude of these pH oscillations at the extreme apex of wild type root hairs1 and Figure 2. These oscillations are thought to modulate tip growth through altering the extensibility of the wall.4 Additional measurements (Fig. 2) show that similar to the effects of NH4NO3, addition of NH4Cl induced increase in the apoplastic pH fluctuations and reduced the pH. However, the effects of NH4Cl on cytoplasmic pH fluctuations seem subtler compared to the effects of NH4NO3. Thus, one possible explanation for the observed swelling of the root hair apex in rop11CA expressing plants in media containing NH4NO3 is that rop11CA root hairs are affected in their ability to re-establish the normal proton gradient across the plasma membrane in response to ammonium transport. The altered proton gradient would then prevent the normal localized oscillatory changes in pH-dependent wall properties required to restrict expansion to the very tip of the elongating root hair.Open in a separate windowFigure 2Changes in apoplastic and cytoplasmic pH fluctuations, following application of NH4NO3, NH4Cl or KNO3. (A) Apolplastic pH (pHex) following treatments with either NH4NO3, NH4Cl or KNO3. Note the increase pH fluctuations induced by either NH4NO3 and NH4Cl but not by KNO3. (B) Cytoplasmic pH (pHcyt) following treatments as above. Note the changes in pH fluctuations induced by NH4NO3 and the subtler effects of NH4Cl.Concurrent absorption of NH4+ and NO3- maintains the cation-anion balance within both the rooting medium and the root, and thus potentially has an important function in maintaining intracellular and extracellular pH.21,22 In agreement, application of these ions affected the amplitude of pH oscillations1 and Figure 2. Interestingly, treatments of WT seedlings with 10 mM NH4NO3 causes increase in root hair pH oscillations and often tip bursting. Yet, prolonged exposure of WT root hairs to NH4NO3 is accompanied by adaptation (our unpublished data). This adaptation does not occur in rop11CA mutants, suggesting that cycling of ROPs between active and inactive states maybe important in adaptation to changing environment. These data strongly suggest that NH4+-dependent root hair swelling in the plants expressing activated ROP resulted from physiological changes in ion balance rather than a direct effect of ammonium on enzymatic activities required for root hair growth (Fig. 1). Application of NH4+ and NO3, in the absence of other ions, induced formation of additional growth tips, in which the membrane localized GFP-rop11CA was concentrated. This observation suggests that interplay between the regulation of ROP localization and activity and the regulation of nitrogen fluxes may have an important function in the maintenance of unidirectional growth. As root hair elongation is coupled to spatially distinct regulation of extracellular pH oscillations and ROS production,7 it seems likely that there is a mechanism that can adjust the fluxes of nitrogen ions relative to these pH fluxes. This system would then maintain the oscillations in pH such that polarized growth is continued. One possible mechanism for this coordination is through the highly localized ROP cycling between active and inactive states that has an important role in the spatial activation of cell polarization machinery.2327 Due to the function of ROP GTPases in vesicle trafficking, actin organization and maintenance of ROS and Ca2+ gradients,2,8,9,23,24,2833 expression of activated ROP11 may indirectly influence cell wall properties by altering the localization and/or recycling of cation and anion transporters/channels or plasma membrane H+-ATPases delivered to the growing tip of the hair and in this way affect the maintenance of the proton gradients. In agreement with a possible effect of activated ROPs on localization and/or recycling of membrane transporters we discovered that rop11CA plants were resistant to ammonium toxicity when grown in the presence of NH4NO3 and several micronutrients.1We propose a model (Fig. 1) in which spatial regulation of ROP activity creates a positive feedback loop with pH oscillations around the growing apex of root hairs. According to this model ROP cycling between active and inactive states spatially and temporally activates the downstream signaling cascades essential for the tip-growth of root hairs. At the same time, localization of membrane proteins involved in maintenance of normal nitrogen fluxes across the plasma membrane is indirectly affected by ROP signaling. Alternatively, ROP signaling is modulated to adapt to altered nitrogen fluxes. NH4+ fluxes increase the amplitude of pH oscillations at the root hair apex and in turn affect cell-wall properties. Thus, when the ROP activity is upregulated by dominant mutations, the synergistic effects of pH changes and constant activation of ROP downstream effectors result in the uncontrolled cell expansion seen as root hair bulging. Previous studies have suggested that feedback between oscillatory pH change and ROS distribution is required to support tip growth.7 However, the factors that may integrate these processes are unknown. Our results suggest that spatial regulation of ROP activity in response to changing environments is one of the key elements that may coordinate the pH and ROS oscillations during the root hair tip growth.It will be interesting to examine whether ROP function is coordinated with apoplastic pH fluctuation in other cell types. Recently, it has been suggested that the effects of auxin on pavement cell structure in leaf epidermis require Auxin Binding Protein 1 (ABP1) dependent ROP activation.34 It is well known that auxin induces changes in apoplastic pH. Possibly, like nitrogen source in root hairs, auxin dependent apolplastic pH fluctuations in the leaf epidermis may function coordinately with ROP in the regulation of cell growth. Consistent with this idea, it has been shown that auxin inhibits clathrin-dependent endocytosis through ABP1 reinforcing a possible role in modulating membrane flux/membrane properties.35 Some auxin resistant mutants also display resistance to ammonium toxicity36 further suggesting a link between auxin and membrane transport. Hence, auxin and ROPs may indeed function synergistically to modulate plasma membrane properties, in turn affecting ion balance in the apoplast and so modulating cell wall properties and growth.  相似文献   

11.
Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.  相似文献   

12.
Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.  相似文献   

13.
Prenylation, the post‐translational attachment of prenyl groups to substrate proteins, can affect their distribution and interactomes. Arabidopsis PLURIPETALA (PLP) encodes the shared α subunit of two heterodimeric protein isoprenyltransferases, whose functional loss provides a unique opportunity to study developmental and cellular processes mediated by its prenylated substrates, such as ROP GTPases. As molecular switches, the distribution and activation of ROPs are mediated by various factors, including guanine nucleotide exchange factors, GTPase activating proteins, guanine nucleotide dissociation inhibitors (RhoGDIs), prenylation, and S‐acylation. However, how these factors together ensure that dynamic ROP signalling is still obscure. We report here that a loss‐of‐function allele of PLP resulted in cytoplasmic accumulation of ROP2 in root hairs and reduced its stability. Consequently, two downstream events of ROP signalling, i.e. actin microfilament (MF) organization and the production of reactive oxygen species (ROS), were compromised. Genetic, cytological and biochemical evidence supports an additive interaction between prenylation and RhoGDI1/SCN1 in ROP2 distribution and stability whereas PLP acts synergistically with the protein S‐acyl transferase TIP GROWTH DEFECTIVE1 during root hair growth. By using root hair growth as a model system, we uncovered complex interactions among prenylation, RhoGDIs, and S‐acylation in dynamic ROP signalling.  相似文献   

14.
Phosphatidylinositol 4,5‐bisphosphate [PtdIns(4,5)P2] serves as a subcellular signal on the plasma membrane, mediating various cell‐polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant‐unique plasma membrane protein with phosphoinositide‐binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long‐root‐hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2‐producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter‐driven PCaP2–green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY‐2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide‐binding domain PCaP2N23, root hair‐specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2–GFP. Inducibly overexpressed PCaP2–GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY‐2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4‐64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2–GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.  相似文献   

15.
Plasma membrane‐associated Ca2+‐binding protein–2 (PCaP2) of Arabidopsis thaliana is a novel‐type protein that binds to the Ca2+/calmodulin complex and phosphatidylinositol phosphates (PtdInsPs) as well as free Ca2+. Although the PCaP2 gene is predominantly expressed in root hair cells, it remains unknown how PCaP2 functions in root hair cells via binding to ligands. From biochemical analyses using purified PCaP2 and its variants, we found that the N–terminal basic domain with 23 amino acids (N23) is necessary and sufficient for binding to PtdInsPs and the Ca2+/calmodulin complex, and that the residual domain of PCaP2 binds to free Ca2+. In mutant analysis, a pcap2 knockdown line displayed longer root hairs than the wild‐type. To examine the function of each domain in root hair cells, we over‐expressed PCaP2 and its variants using the root hair cell‐specific EXPANSIN A7 promoter. Transgenic lines over‐expressing PCaP2, PCaP2G2A (second glycine substituted by alanine) and ?23PCaP2 (lacking the N23 domain) exhibited abnormal branched and bulbous root hair cells, while over‐expression of the N23 domain suppressed root hair emergence and elongation. The N23 domain was necessary and sufficient for the plasma membrane localization of GFP‐tagged PCaP2. These results suggest that the N23 domain of PCaP2 negatively regulates root hair tip growth via processing Ca2+ and PtdInsP signals on the plasma membrane, while the residual domain is involved in the polarization of cell expansion.  相似文献   

16.
极性生长是植物生长发育中的常见现象,但囊泡运输与极性生长的关系还未完全明确。花粉管和根毛是植物细胞极性生长的典型模式。早期研究显示NtGNL1(Nicotiana tabacum GNOM-LIKE 1)通过调节囊泡的后高尔基体转运来影响烟草的花粉管生长。本文以NtGNL1 RNAi转基因植株为材料,研究NtGNL1基因在根毛生长中的作用。结果表明,NtGNL1 RNAi转基因植株的根毛生长明显滞后于野生型,且其根毛出现膨大、弯折、扭曲等形态,与NtGNL1 RNAi转基因植株的花粉管异常形态类似。q RT-PCR检测RNAi转基因株系根毛中PIN1、PIN2、GL2、ROP6、RHD6基因的m RNA表达量,显示PIN2和GL2的表达量显著下调,PIN1、ROP6和RHD6的表达量变化不明显。FM4-64染色表明烟草根表皮细胞和根毛的囊泡分布都受到影响,即NtGNL1基因也影响根毛中的囊泡运输。BFA处理加剧了囊泡的聚集程度,提示根毛尖端还存在其它对BFA敏感并调控囊泡运输的基因。以上证据显示,NtGNL1基因通过囊泡运输途径影响烟草根毛的极性生长,NtGNL1基因的表达下调也影响了PIN2和GL2的表达,从而间接影响根毛的极性生长。  相似文献   

17.
Oscillations in cytosolic free calcium determine the polarity of tip‐growing root hairs. The Ca2+ channel cyclic nucleotide gated channel 14 (CNGC14) contributes to the dynamic changes in Ca2+ concentration gradient at the root hair tip. However, the mechanisms that regulate CNGC14 are unknown. In this study, we detected a direct interaction between calmodulin 7 (CaM7) and CNGC14 through yeast two‐hybrid and bimolecular fluorescence complementation assays. We demonstrated that the third EF‐hand domain of CaM7 specifically interacts with the cytosolic C‐terminal domain of CNGC14. A two‐electrode voltage clamp assay showed that CaM7 completely inhibits CNGC14‐mediated Ca2+ influx, suggesting that CaM7 negatively regulates CNGC14‐mediated calcium signaling. Furthermore, CaM7 overexpressing lines phenocopy the short root hair phenotype of a cngc14 mutant and this phenotype is insensitive to changes in external Ca2+ concentrations. We, thus, identified CaM7‐CNGC14 as a novel interacting module that regulates polar growth in root hairs by controlling the tip‐focused Ca2+ signal.  相似文献   

18.
Root hair development is orchestrated by nutritional factors and plant hormones. We investigated the action of ammonium (NH4+) and its interactions with methyl jasmonate (MeJA) and ethylene in Arabidopsis root hair growth. The formation of root hair branches was dramatically stimulated in media containing 1.25 to 20 mM NH4+ at pH values of 4.0 to 6.5. The NH4+-treated root hairs showed a very short tip growth stage and swells on the sides that indicated the emergence of branches. MeJA (0.08 to 10 μM) worked in synergism with NH4+ to enhance hair branching. In contrast, ethylene had an antagonistic effect; the stimulation of hair branching by NH4+ was suppressed by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and was diminished in ethylene-overproducing mutant eto1-1 seedlings. Moreover, the application of Ag+, an ethylene inhibitor, reduced the ACC-induced inhibition of NH4+-stimulated hair branching and restored NH4+-stimulated hair branching in eto1-1 seedlings. Thus, the actions of jasmonate and ethylene appear to be dependent on nutritional conditions such as available nitrogen.  相似文献   

19.
20.
The recently isolated root‐hairless mutant of barley (Hordeum vulgare L), bald root barley, brb offers a unique possibility to quantify the importance of root hairs in phosphorus (P) uptake from soil. In the present study the ability of brb and the wild‐type, barley genotype Pallas producing normal root hairs to deplete P in the rhizosphere soil was investigated and the theory of diffusion and mass flow applied to compare the predicted and measured depletion profiles of diffusible P. Pallas depleted twice as much P from the rhizosphere soil as brb. The P depletion profile of Pallas uniformly extended to 0.8 mm from the root surface, which was equal to the root hair length (RHL). The model based on the theory of diffusion and mass flow explained the observed P‐depletion profile of brb, and the P depletion outside the root‐hair zone of Pallas, suggesting that the model is valid only for P movement in rhizosphere soil outside the root‐hair zone. In low‐P soil (P in soil solution 3 µm ) brb did not survive after 30 d, whereas Pallas continued to grow, confirming the importance of root hairs in plant growth in a P‐limiting environment. In high‐P soil (P in soil solution 10 µm ) both brb and Pallas maintained their growth, and they were able to produce seeds. At the high‐P concentration, RHL of the Pallas was reduced from 0.80 ± 0.2 to 0.68 ± 0.14 mm. In low‐P soil, P‐uptake rate into the roots of Pallas was 4.0 × 10?7 g mm?1 d?1 and that of brb was 1.9 × 10?7 g mm?1 d?1, which agreed well with the double amount of P depleted from the rhizosphere soil of Pallas in comparison with that of brb. In high‐P soil, the P uptake rates into the roots of brb and Pallas were 3.3 and 5.5 × 10?7 g mm?1 d?1, respectively. The results unequivocally confirmed that in a low‐P environment, root hairs are of immense importance in P acquisition and plants survival, but under high‐P conditions they may be dispensable. The characterization of phenotypes brb and Pallas and the ability to reproduce seeds offers a unique possibility of molecular mapping of QTLs and candidate genes conferring root‐hair formation and growth of barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号