首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant.  相似文献   

2.
The Cas-Br-E and ts-Mo BA-1 murine leukemia viruses (MuLV) induce a spongiform neurodegenerative disease with different clinical manifestations, namely, either hind limb paralysis (Cas-Br-E) or tremors, spasticity, and hind limb weakness (ts-Mo Ba-1). We constructed the chimeric NEBA-1 MuLV by replacing the long terminal repeat of Cas-Br-E MuLV with that of ts-Mo BA-1 MuLV. In SWR/J or CFW/D mice, NEBA-1 MuLV induced an ataxic neurological disease characterized by clinical signs different from those induced by both parents. Although NEBA-1 MuLV did not induce lesions in novel brain areas, the spongiform lesions were more severe in deep cerebellar nuclei and in the spinal cord than those found in paralyzed mice inoculated with Cas-Br-E MuLV. By in situ hybridization, we found that the distribution of the spongiform lesions closely correlated with the distribution of the infected central nervous system cells. In the spinal cord, a close correlation was found between the number of infected cells and the severity of the spongiform degeneration. Sequencing of the substituted ts-BA-1 MuLV fragment and comparison with homologous sequences of Cas-Br-E and Moloney MuLV showed differences mainly in the U3 tandem direct repeats. Our results show that a few modifications within the U3 long terminal repeat allow the virus to cause more severe lesions in some central nervous system regions and that the severity of the spongiform degeneration correlates with the level of viral replication.  相似文献   

3.
In C58 and AKR mice, endogenous N-tropic, ecotropic murine leukemia virus (MuLV) proviruses become activated in rare cells during embryogenesis. Resultant replication-competent progeny viruses then actively infect a large number of cells throughout the fetus, including cells in the developing central nervous system. By in situ hybridization analyses, we have assessed the presence of ecotropic MuLV RNA in the brains of C58 mice as a function of age. Only a few ecotropic MuLV-positive cells were observed in weanling mice, but the number of positive cells in the brain increased progressively with increasing age of the mice. Throughout the lives of the mice, the ecotropic MuLV RNA-positive cells were primarily located in well-defined white-matter tracts of the brain (commissura anterior, corpus callosum, fimbria hippocampi, optical tract, and striatum) and of the spinal cord. Cells of the subventricular zone also expressed ecotropic MuLV RNA, and in older mice a small number of positive cells were present in the grey matter. Infection of endogenous ecotropic MuLV provirus-less CE/J mice in utero with ecotropic MuLV clone AKR-623 resulted in the extensive infection of brain cells. The regional distribution of ecotropic MuLV RNA-containing cells was the same as observed in the brains of C58 mice, in which cells became infected by endogenously activated virus, but the number of positive cells was higher.  相似文献   

4.
Murray B. Gardner 《Genetica》1993,91(1-3):199-209
Different populations of wild mice (Mus musculus domesticus) in Los Angeles and Ventura Counties were observed over their lifespan in captivity for expression of infectious murine leukemia virus (MuLV) and murine mammary tumor virus (MMTV) and for the occurrence of cancer and other diseases. In most populations of feral mice these indigenous retroviruses were infrequently expressed and cancer seldom occurred until later in life (>2 years old). MMTV was found in the milk of about 50% of wild mice, but was associated with only a low incidence (>1%) of breast cancer after one year of age. By contrast, in several populations, most notably at a squab farm near Lake Casitas (LC), infectious MuLV acquired at birth via milk was highly prevalent, and the infected mice were prone to leukemia and a lower motor neuron paralytic disease after one year of age. These two diseases were both caused by the same infectious (ecotropic)strain of MuLV and were the principal cause of premature death in these aging LC mice. A dominant gene called FV-4R restricting the infection with ecotropic MuLV was found segregating in LC mice. Mice inheriting this FV-4R allele were resistant to the ecotropic MuLV associated lymphoma and paralysis. The FV-4R allele represents a defective endogenous MuLV provirus DNA segment that expresses an ecotropic MuLV envelope-related glycoprotein (gp70) on the cell surface. This FV-4R encoded gp70 presumably occupies the receptor for ecotropic MuLV and blocks entry of the virus. The FV-4R gene was probably acquired by the naturally occurring crossbreeding of LC feral mice with another species of feral mice (Mus castaneus) from Southeast Asia. The FV-4R gp70 does not block entry of the amphotropic MuLV that uses a separate cell surface receptor. Therefore LC mice continued to be susceptible to the highly prevalent but weakly lymphogenic and nonparalytogenic amphotropic strain of MuLV. The study points out the potential of feral populations to reveal genes associated with specific disease resistance.  相似文献   

5.
The widespread presence of endogenous retroviruses in the genomes of animals and humans has suggested that these viruses may be involved in both normal and abnormal developmental processes. Previous studies have indicated the involvement of endogenous ecotropic murine leukemia virus (MuLV) in the development of age-dependent poliomyelitis caused by infection of old C58 or AKR mice by lactate dehydrogenase-elevating virus (LDV). The only genetic components which segregate with susceptibility to LDV-induced paralytic disease are multiple proviral copies of ecotropic MuLV and the permissive allele, at the Fv-1 locus, for N-tropic, ecotropic virus replication (Fv-1n/n). Using in situ hybridization and Northern (RNA) blot hybridization, we have correlated the expression of the endogenous MuLV, both temporally and spatially, with LDV infection of anterior horn motor neurons and the development of paralysis. Our data indicate that treatment of 6- to 7-month-old C58/M mice with cyclophosphamide, which renders these mice susceptible to LDV-induced paralytic disease, results in transient increases in ecotropic MuLV RNA levels in motor neurons throughout the spinal cord. Peripheral inoculation of C58/M mice with LDV, at the time of elevated MuLV RNA levels, results in a rapid spread of LDV to some spinal cord motor neurons. LDV infections then spread slowly but progressively throughout the spinal cord, involving an increasing number of motor neurons. LDV replication is cytocidal and results in neuron destruction and paralysis of the infected animals 2 to 3 weeks postinfection. The slow replication of LDV in the spinal cord contrasts sharply with the rapid replication of LDV in macrophages, the normal host cells for LDV, during the acute phase of infection. The data indicate that the interaction between the endogenous MuLV with the generally nonpathogenic murine togavirus LDV occurs at the level of the motor neuron. We discuss potential mechanisms for the novel dual-virus etiology of age-dependent poliomyelitis of mice.  相似文献   

6.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

7.
An NFS/N mouse inoculated at birth with an ecotropic murine leukemia virus (MuLV) obtained from wild mice (Cas-Br-M MuLV) developed a lymphoma after 18 weeks. An extract prepared from the lymphomatous spleen was inoculated into newborn NFS/N mice, and these mice developed erythroleukemia within 9 weeks. Spleens from the erythroleukemic mice contained ecotropic and mink cell focus-inducing (MCF) MuLVs; however, when these viruses were biologically cloned and reinoculated into newborn NFS/N mice, no erythroleukemia was induced. In contrast, cell-free extracts prepared from the erythroleukemic spleens induced erythroleukemia within 5 weeks. Analysis of cell-free extracts prepared from the erythroleukemic spleens showed that they contained a viral species that induced splenomegaly and spleen focus formation in adult mice, with susceptibility controlled by alleles at the Fv-2 locus. The spleen focus-forming virus coded for a 50,000-dalton protein precipitated by antibodies specific to MCF virus gp70. RNA blot hybridization studies showed the genomic viral RNA to be 7.5 kilobases and to hybridize strongly to a xenotropic or MCF envelope-specific probe but not to hybridize with an ecotropic virus envelope-specific probe. The virus described here appears to be the fourth independent isolate of a MuLV with spleen focus-forming activity.  相似文献   

8.
Mouse chromosome segregating somatic cell hybrids were established between a mouse thymic leukemai cell line (GRSL) and Chinese hamster E36 cells. The GRSL cells specifically bound purified Rauscher leukemia virus gp70 while the E36 cells exhibited no binding. The hybrids selectively bound Ruascher gp70 depending on the presence of a mouse cellular gene for the ecotropic murine luekemia gp70 receptor. A syntenic relationship was observed between the DIP-3 chromosome marker (on chromosome 5) and the gp70 receptor in primary clones and subclones of these hybrids; this was confirmed by chromosome analysis. The involvement of H-2 in the binding of Rauscher MuLV gp70 could be ruled out, because discordancies of the receptor presence and H-2 absence as well as of the receptor absence and H-2 presence type could be observed. Our results indicate that the Rec-1 (replication ecotropic MuLV) gene of Gazdar et al. (4) may well be the receptor gene for the ecotropic murine leukemia virus.  相似文献   

9.
R A Bessen  W P Lynch    J L Portis 《Journal of virology》1995,69(11):7300-7303
The neurovirulent chimeric mouse ecotropic retrovirus FrCasE causes a rapid neurodegenerative disease of the central nervous system (CNS) characterized by the appearance of spongiform lesions in motor areas 10 days after neonatal inoculation. To study the details of the pathogenic process, we examined the ability of an ex vivo spinal cord model to recapitulate disease. Organotypic spinal cord slice cultures were established from IRW mice 7 days after neonatal inoculation. This corresponds to a time when virus expression in the CNS is first detectable but spongiform changes have yet to evolve. Infectivity associated with these cultures peaked at 7 days in vitro and persisted at this level for 6 weeks. FrCasE infection of the spinal cord slices was primarily found associated with microglial cells. Infection of neurons, astrocytes, oligodendroglia, and endothelial cells was not observed; however, significant astrogliosis was found. Despite the presence of extensive microglial infection in close association with spinal motor neurons in organotypic cultures, no virus-specific spongiform degenerative changes were observed. These results suggest that removal of motor neurons from the developing CNS, despite maintaining the local cytoarchitectural relationships, prevents the virus from eliciting its pathological effects. Possible reasons for the interruption of lesion development are discussed.  相似文献   

10.
We used AKR/J mice to produce monoclonal antibodies specific for a neurotropic ecotropic (WM-E) virus initially isolated from wild mice. The rationale for this approach involved the observation that these mice were immunologically hyporesponsive to endogenous ecotropic virus (Akv) but fully responsive to type-specific determinants of WM-E. Hybridoma cell lines derived from mice immunized with both denatured and viable virus produced antibodies with specificity for three viral membrane-associated polypeptides, gp70, p15(E), and p15gag. Epitopes specific for WM-E virus were detected in each of these polypeptides. Cross-reactivity with Friend ecotropic virus (Friend murine leukemia virus) was observed with some gp70- and p15gag-specific antibodies, but no reactivity with endogenous Akv ecotropic virus was seen. The majority of these antibodies did not react with either xenotropic or mink cell focus-forming viruses. Two WM-E-specific anti-gp70 antibodies reacting with different determinants had virus-neutralizing activity in the absence of complement, suggesting that the respective epitopes may participate in receptor binding or virus penetration events. We used these monoclonal antibodies in initial studies to examine the replication of WM-E virus in neonatally inoculated AKR/J mice which are fully resistant to the paralytic disease induced by this virus. Since these mice express high levels of endogenous ecotropic virus, standard assays for ecotropic virus cannot be used to study this question. We present evidence that the resistance to disease does not involve a resistance to virus replication, since these mice expressed levels of viremia and virus replication in spleen and lumbar spinal cord comparable to susceptible NFS/N mice at a time when the latter began to manifest clinical signs of lower-motor-neuron pathology.  相似文献   

11.
The ecotropic Cas-Br-E murine leukemia virus (MuLV) and its molecularly cloned derivative pBR-NE-8 MuLV are capable of inducing hind-limb paralysis and leukemia after inoculation into susceptible mice. T1 oligonucleotide fingerprinting, molecular hybridization, and restriction enzyme analysis previously showed that the env gene of Cas-Br-E MuLV diverged the most from that of other ecotropic MuLVs. To analyze proviruses in leukemic tissues, we derived DNA probes specific to Cas-Br-E sequences: two from the env region and one from the U3 long terminal repeat. With these probes, we found that this virus induced clonal (or oligoclonal) tumors and we documented the presence of typical mink cell focus-forming-type proviruses in leukemic tissues and the possible presence of other recombinant MuLV proviruses. Since the region harboring the determinant of paralysis was mapped within the pol-env region of the virus (L. DesGroseillers, M. Barrette, and P. Jolicoeur, J. Virol. 52:356-363, 1984), we performed the complete nucleotide sequence of this region covering the 3' end of the genome. We compared the deduced amino acid sequences of the pol carboxy-terminal domain and of the env gene products with those of other nonparalytogenic, ecotropic, and mink cell focus-forming MuLVs. This amino acid comparison revealed that this part of the pol gene product and the p15E diverged very little from homologous proteins of other MuLVs. However, the Cas-Br-E gp70 sequence was found to be quite divergent from that of other MuLVs, and the amino acid changes were distributed all along the protein. Therefore, gp70 remains the best candidate for harboring the determinant of paralysis.  相似文献   

12.
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.  相似文献   

13.
Genomes of murine leukemia viruses isolated from wild mice.   总被引:41,自引:29,他引:12       下载免费PDF全文
The genomes of murine leukemia viruses (MuLV) isolated from wild mice have been studied. Detailed restriction endonuclease maps of the 8.8-kilobase (kb) unintegrated linear viral DNAs were derived for five ecotropic and five amphotropic MuLV's from California field mice, for Friend MuLV, and for one ecotropic and one xenotropic MuLV from Mus musculus castaneus. In general, the California MuLV's were similar in their leftward 6 kb (corresponding to the leftward long terminal repeat [LTR], gag, and pol) and rightward 1 kb (7.8 to 8.8 kb, corresponding to p15E and the rightward LTR). For the region spanning 6.0 to 7.7 kb (which includes the sequences that encode gp70) the amphotropic MuLV's shared few enzyme sites with the ecotropic MuLV's, although the California ecotropic MuLV's were highly related to each other in this region, as were the amphotropic MuLV's. Cross-hybridization studies between amphotropic and California ecotropic MuLV DNAs indicated that they were not homologous in the region 6.3 to 7.6 kb; the California ecotropic viral DNAs cross-hybridized in this region to AKR ecotropic MuLV. When the California viral DNAs were compared with AKR ecotropic viral DNA, many differences in enzyme sites were noted throughout the genome. The U3 regions of the wild mouse LTRs showed partial homology to this region in AKR MuLV. The LTR of Moloney MuLV was highly related to that of the California MuLV's, whereas the LTR of Friend MuLV appeared to be a recombinant between the two types of LTRs. The M. musculus castaneus isolates were most closely related to ecotropic and xenotropic MuLV's isolated from inbred mice. One amphotropic MuLV DNA was cloned from supercoiled viral DNA at its unique EcoRI site in pBR322. Viral DNAs with one and two LTRs were isolated. After digestion with EcoRI, DNAs of both types were infectious. It is concluded that ecotropic and amphotropic MuLV's differ primarily in the region which encodes gp70.  相似文献   

14.
In previous studies we observed that resistance of murine SV40-transformed fibroblast cell lines to cytolysis by activated macrophages was frequently associated with cellular expression of the gp70 of an endogenous ecotropic murine leukemia virus (MuLV). The work described here was initiated to test directly for a causative relationship between MuLV expression and resistance to lysis by macrophages. Northern blot analysis revealed that macrophage-resistant cells contain full length retroviral RNA. A panel of mAb which distinguish among host-range classes of MuLV detected only a non-recombinant ecotropic gp70 in these cells. The ecotropic MuLV from two independently derived macrophage resistant cells were isolated by limiting dilution cloning on Mus dunii fibroblasts. These viruses were then used to infect macrophage-sensitive cell lines and the resultant MuLV-positive cells tested for sensitivity to macrophage cytolysis. The MuLV-infected lines remained highly sensitive to macrophage lysis despite their high levels of cell surface gp70 and release of infectious MuLV. Thus, although we cannot rule out the possibility that MuLV or a product thereof is necessary for development of macrophage resistance in transformed cells, expression of MuLV per se is not sufficient to create the resistant phenotype.  相似文献   

15.
NFS/N mice inoculated at birth with an ecotropic murine leukemia virus (Cas-Br-MuLV) obtained from wild mice developed hind limb paralysis beginning at 7 weeks of age and nonthymic lymphomas beginning at more than 20 weeks of age. Studies of 1- to 7-week-old Cas-Br-M MuLV-infected mice showed the following: (i) a marked increase in nonecotropic MuLV-related antigens on spleen cells but not thymocytes beginning at 2 weeks; (ii) the appearance of dual-tropic mink cell focus-forming (MCF) MuLV-related gp70 in spleen but not thymus or brain cells at 4 weeks; and (iii) the isolation of infectious MCF MuLV from spleen cells of 7-week-old mice. A role for MCF MuLV in Cas-Br-M MuLV-induced nonthymic lymphomas is indicated by these studies, and a role for recombinant MuLV in neurological disease is considered.  相似文献   

16.
Antisera produced in mice recognize primarily type-specific antigenic determinants on both the major core protein, p30, and the major envelope proteins, gp70 and p15(E), of the endogenous leukemia viruses (MuLV) of BALB/c mice. Three different mouse sera were investigated in detail. (i) Antisera prepared in C57BL/6 mice against the AKR leukemia K36 reacted with the gp70, p15(E), and p30 proteins of MuLV. Certain pools of the C57BL/6 anti-AKR K36 serum contained antibodies which serologically distinguished the p30 proteins of N-ecotropic, B-ecotropic, and xenotropic BALB/c MuLV. (ii) Antisera prepared in BALB/c mice against the BALB/c sarcoma 1315 contained antibodies that reacted with a type-specific antigen of the 1315 MuLV gp70 that is not found on other BALB/c MuLV. (iii) The normal sera of multiparous BALB/c mice contained antibodies that reacted with gp70 and p15(E) proteins of ecotropic MuLV. Sera from some of these mice contained antibodies that serologically distinguished the gp70 of N-ecotropic and B-ecotropic BALB/c viruses. These results emphasize the utility of mouse antisera in the serological typing of MuLV. Furthermore, the antigenic differences observed in the p30 and gp70 proteins should be of particular use in the future analysis of recombinant BALB/c MuLV.  相似文献   

17.
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.  相似文献   

18.
The Gross passage A murine leukemia virus (MuLV) is a highly leukemogenic, ecotropic fibrotropic retrovirus. Its genome is similar to that of other nonleukemogenic ecotropic fibrotropic MuLVs but differs at the 3' end and in the long terminal repeat. To determine whether these modifications were related to its leukemogenic potential, we constructed a viral DNA recombinant in vitro with cloned infectious DNA from this highly leukemogenic Gross passage A MuLV and from a weakly leukemogenic endogenous BALB/c B-tropic MuLV. Infectious viruses, recovered after microinjection of murine cells with recombinant DNA, were injected into newborn mice. We show here that the Gross passage A 1.35-kilobase-pair KpnI fragment (harboring part of gp70, all of p15E, and the long terminal repeat) is sufficient to confer a high leukemogenic potential to this recombinant.  相似文献   

19.
Recombinant inbred BXH-2 mice spontaneously produce a B-tropic murine leukemia virus (MuLV) beginning early in life and have a high incidence of spontaneous myeloid leukemia. These traits are not characteristic of the progenitor strains (C57BL/6J and C3H/HeJ) or of 11 other recombinant inbred BXH strains. Genetic analysis has shown that the virus is not transmitted through the germ line, suggesting that the virus is passed from one generation to the next by horizontal transmission. An additional ecotropic proviral locus was detected in some mice of this strain after several generations of inbreeding. We show that BXH ecotropic virus was transmitted to other strains when fostered on viremic BXH-2 mice and that these mice go on to develop tumors of hematopoietic origin. Our earlier finding that virus is expressed early in gestation suggested that the ecotropic MuLV is also transmitted in utero. In order to determine the stage at which the ecotropic MuLV is transmitted in utero, preimplantation stage embryos were transferred to the uteri of recipient ecotropic virus-negative mice. These mice were found to be negative for the presence of the ecotropic MuLV, suggesting that transplacental transmission of the ecotropic virus readily occurs in BXH-2 mice. Although other viruses, including human lentiviruses, are transmitted across the placental barrier, transplacental transmission of MuLV is a rare event. Thus, the BXH-2 mouse strain may contribute to our understanding of the mechanism of transplacental transmission and pathogenesis and offers a potential new model for use in drug therapy of exogenously transmitted viruses related to lentiviruses.  相似文献   

20.
The mouse macrophage-like cell line RAW264.7, the most commonly used mouse macrophage cell line in medical research, was originally reported to be free of replication-competent murine leukemia virus (MuLV) despite its origin in a tumor induced by Abelson MuLV containing Moloney MuLV as helper virus. As currently available, however, we find that it produces significant levels of ecotropic MuLV with the biologic features of the Moloney isolate and also MuLV of the polytropic or MCF class. Newborn mice developed lymphoma following inoculation with the MuLV mixture expressed by these cells. These findings should be considered in interpretation of increasingly widespread use of these cells for propagation of other viruses, studies of biological responses to virus infection and use in RNA interference and cell signalling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号