首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多糖-药物轭合物的研究与展望   总被引:1,自引:0,他引:1  
多糖类物质作为赋形剂在药物制剂中已被广泛使用,多糖结构中包含了多种活性基团如羟基、羧基、氨基等,具有良好的亲水性、生物可降解性以及生物安全性,使其在聚合物-药物轭合物的构建中成为理想的载体材料.目前天然的多糖大分子及其衍生物作为药物载体的研究方兴未艾,以多糖为载体的聚合物-药物轭合物在定位或靶向给药、组织工程、生物黏附等领域也备受关注.本文以天然多糖-药物轭合物的研究现状为切入点,总结归纳了多糖-药物轭合物的设计与构建途径,介绍了其在药物传递中的应用,讨论并分析了多糖在轭合物体系中的角色和发挥的作用,对以多糖为载体的聚合物-药物轭合物发展的方向予以了讨论.  相似文献   

2.
A polylactide copolymer with pendant benzyloxy groups has been synthesized by the copolymerization of a benzyl-ether substituted monomer with lactide. Debenzylation of the polymer to provide pendant hydroxyl groups followed by modification with succinic anhydride affords the corresponding carboxylic acid functionalized copolymer that is amenable to standard carbodiimide coupling conditions to attach amine-containing biological molecules. An amino-substituted biotin derivative was coupled to the carboxyl functional groups of copolymer films as proof-of-concept. In a demonstration of the function of these new materials, an RGD-containing peptide sequence was tethered to copolymer films at various densities and was shown to enhance the adhesion of epithelial cells. This strategy provides the opportunity for the attachment of a variety of ligands, allowing for the fabrication of a versatile class of biodegradable, biocompatible materials.  相似文献   

3.
Synthetic biodegradable polymers are important biomaterials. However, most of them are biologically inert. Free functional groups can allow easy biofunctionalization. Efficient introduction of functional groups to biodegradable polymers is still a challenge. Here, a practical strategy is presented to synthesize various functional polyesters with free hydroxyl groups polymerized via epoxide ring-opening polymerization between dicarboxylic acids and diglycidyl dicarboxylates without protection and deprotection. The polymers exhibit a wide range of physical, thermal, and mechanical properties, and good cytocompatibilities. This synthetic platform is expected to lead to functional polymers useful for a wide variety of biomedical applications.  相似文献   

4.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   

5.
Hu X  Liu S  Chen X  Mo G  Xie Z  Jing X 《Biomacromolecules》2008,9(2):553-560
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-lactide-co-9-phenyl-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)2 as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure. It could self-assemble into micelles in aqueous solution with critical micelle concentration (CMC) in the magnitude of mg/L, which changed with the composition of the copolymer. After catalytic hydrogenation, copolymers with active hydroxyl groups were obtained. Adhesion and proliferation of Vero cells on the copolymer films showed that the synthesized copolymers were good biocompatible materials. In vitro degradation of the copolymer before and after deprotection was investigated in the presence of proteinase K. The free hydroxyl groups on the copolymers were capable of further modification with biotin. This new amphiphilic block copolymer has great potential for both drug encapsulation and conjugate because of its low CMC and the presence of active hydroxyl groups.  相似文献   

6.
Electronics wastes (e‐wastes) are the major concern in the rapid expansion of smart/wearable/portable electronics in modern high‐tech society. Informal processing and enormous gathering of e‐wastes can lead to adverse human/animal health effects and environmental pollution worldwide. Currently, these issues are a big headache and require the scientific community to develop effective green energy harvesting technologies using biodegradable/biocompatible materials. Piezoelectric/triboelectric nanogenerators (PNGs/TNGs) are considered one of the most promising renewable green energy sources for the conversion of mechanical/biomechanical energies into electricity. However, organic/inorganic material based PNGs/TNGs are very much incompatible, and considered e‐wastes for their non‐biodegradability. This review covers potential uses of biodegradable/biocompatible materials which are wasted every day as nature driven material based bio‐nanogenerators with a particular focus on their applications in flexible PNGs/TNGs fabrication. Structural investigation and possible working principles are described first in order to outline the basic mechanism of bio‐inspired materials behind energy harvesting. Then, energy harvesting abilities and the mechanical sensing of bio‐inspired integrated flexible devices are discussed under various mechanical/biomechanical activities. Finally, their potential applications in various flexible, wearable, and portable electronic fields are demonstrated. These bio‐inspired energy harvesting devices can make huge changes in fields as diverse as portable electronics, in vitro/in vivo biomedical applications, and many more.  相似文献   

7.
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.  相似文献   

8.
Bacterial polyesters have attracted much attention as biodegradable biocompatible polymers. Poly-3-hydroxybutyrate, a microbially produced thermoplastic, has similar material properties to polypropylene. Its potential application as biodegradable and biocompatible plastics is well documented. However, due to high cost it is used mainly in biomaterials for medical applications. Materials with useful properties may result from blending bacterial polyhydroxybutyrate (PHB) with other polymers. In this paper, the compatibility of PHB with starch for improved properties and cost reduction is discussed. The thermal and mechanical properties of the blended films were studied by means of thermogravimetry, differential scanning calorimetry and an automated material testing system. The results revealed that blend films had a single glass transition temperature for all the proportions of PHB:starch tested. The nature of all combinations was found to be crystalline. The tensile strength was optimum for the PHB:starch ratio of 0.7:0.3 (wt/wt). The variation in tensile strength, Young's modulus, extension needed to break, thermal stability, glass transition temperature, melting temperature, for the different proportions of PHB:starch are discussed.  相似文献   

9.
Huang L  Zhuang X  Hu J  Lang L  Zhang P  Wang Y  Chen X  Wei Y  Jing X 《Biomacromolecules》2008,9(3):850-858
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.  相似文献   

10.
Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.  相似文献   

11.
Surgical adhesives have been used for several applications, including haemostasis, sealing air leakages and tissue adhesion. The aim of this work was to develop a biodegradable urethane-based bioadhesive containing free isocyanate groups. This material presents the advantage of being biodegradable, biocompatible and having the capacity of reacting with amino groups present in the biological molecules. A urethane based on castor oil (CO) was synthesized by reaction of the molecule with isophorone diisocyanate (IPD). The characterization of the material was accomplished by different techniques: ATR-FT-IR (attenuated transmittance reflection-Fourier transform infrared), swelling capacity determination, evaluation of the moisture curing kinetics, reaction with aminated substrates and determination of surface energy by contact angle measurement. The study of the urethane thermal properties was performed by DMTA (dynamical mechanical thermal analysis) and TGA (thermogravimetric analysis). The haemocompatibility of the urethane was also evaluated by thrombosis and haemolysis tests.  相似文献   

12.
Bioplastics from microorganisms   总被引:7,自引:0,他引:7  
The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.  相似文献   

13.
Novel chitin and chitosan nanofibers in biomedical applications   总被引:2,自引:0,他引:2  
Chitin and its deacetylated derivative, chitosan, are non-toxic, antibacterial, biodegradable and biocompatible biopolymers. Due to these properties, they are widely used for biomedical applications such as tissue engineering scaffolds, drug delivery, wound dressings, separation membranes and antibacterial coatings, stent coatings, and sensors. In the recent years, electrospinning has been found to be a novel technique to produce chitin and chitosan nanofibers. These nanofibers find novel applications in biomedical fields due to their high surface area and porosity. This article reviews the recent reports on the preparation, properties and biomedical applications of chitin and chitosan based nanofibers in detail.  相似文献   

14.
Zeng F  Lee H  Chidiac M  Allen C 《Biomacromolecules》2005,6(4):2140-2149
Novel amphiphilic six-arm star diblock copolymers based on biocompatible and biodegradable poly(delta-valerolactone) (PVL) and methoxy poly(ethylene glycol) (MePEG) were synthesized by a two-step process. First, the hydrophobic star-shaped PVL with hydroxyl terminated functional groups was synthesized using a multifunctional alcohol, dipentaerythritol (DPE), as the initiator and fumaric acid as the catalyst. The amphiphilic six-arm star copolymer of poly(delta-valerolactone)-b-methoxy poly(ethylene glycol), (PVL-b-MePEG)(6), was then synthesized by coupling the hydroxyl terminated six-arm PVL homopolymer with alpha-methoxy-omega-chloroformate-poly(ethylene glycol) (MePEG-COCl). (1)H NMR and GPC analyses confirmed the successful synthesis of star-shaped copolymers with predicted compositions and narrow molecular weight distributions. DSC analysis revealed that the glass transition temperatures of the star PVL homopolymers with M(n) between 5000 and 49 000 are not dependent on their molecular weights, whereas the melting temperatures of both the PVL homopolymers and the amphiphilic (PVL-b-MePEG)(6) copolymers increase with an increase in the PVL molecular weight. Micelles were prepared from the (PVL-b-MePEG)(6) copolymers via the dialysis method and found to have effective mean diameters ranging from 10 to 45 nm, depending on the copolymer composition. In addition, the (PVL-b-MePEG)(6) copolymers having lower PVL content were found to form micelles with a narrow monomodal size distribution, whereas the copolymers having higher PVL content tended to form aggregates with a bimodal size distribution. The noncytotoxicity of the copolymers was also confirmed in CHO-K1 fibroblast cells using a cell viability assay, indicating that the (PVL-b-MePEG)(6) copolymers are suitable for biomedical applications such as drug delivery.  相似文献   

15.
While biodegradable, biocompatible polyesters such as poly (lactic-co-glycolic acid) (PLGA) are popular materials for the manufacture of tissue engineering scaffolds, their surface properties are not particularly suitable for directed tissue growth. Although a number of approaches to chemically modify the PLGA surface have been reported, their applicability to soft tissue scaffolds, which combine large volumes, complex shapes, and extremely fine structures, is questionable. In this paper, we describe two wet-chemical methods, base hydrolysis and aminolysis, to introduce useful levels of carboxylic acid or primary and secondary amine groups, respectively, onto the surface of PLGA with minimal degradation. The effects of temperature, concentration, pH, and solvent type on the kinetics of these reactions are studied by following changes in the wettability of the PLGA using contact angle measurements. In addition, the treated surfaces are studied using X-ray photoelectron spectroscopy (XPS) to determine the effect on the surface chemical structure. Furthermore, we show using XPS analysis that these carboxyl and amine groups are readily activated to allow the covalent attachment of biological macromolecules.  相似文献   

16.
The synthesis and characterization of a photocurable biodegradable elastomer as a potential biomaterial for the delivery of thermosensitive drugs are described. The elastomer was prepared from UV initiated cross-linking of an acrylated star-poly(epsilon-caprolactone-co-D,L-lactide) prepolymer. The influence of the molecular weight of the acrylated prepolymer on the final elastomer mechanical and thermal properties was determined. The glass-transition temperature of the elastomers was independent of the prepolymer molecular weight and was from -6 to -8 degrees C. The Young's modulus and stress at break of the elastomers was proportional to the inverse of the prepolymer molecular weight, while the strain at break increased in a linear fashion with the prepolymer molecular weight. Over a degradation period of 12 weeks in phosphate buffered saline, the elastomers exhibited little mass loss, appreciable mechanical strength loss, and little dimensional or strain at break change.  相似文献   

17.
Biodegradable materials have various important applications in the biomedical field. There are basically two groups of polyesters which have significant importance in this field. These are polylactides and polyhydroxybutyrates. Both groups degrade via hydrolysis with the rates of degradation depending on medium properties such as pH, temperature, solvent and presence of biocatalysts, as well as on chemical compositions. In order for these biomaterials to be suitable for use in load bearing applications without deformation or warping their strengths and their capability to maintain their form must be improved. To insure dimensional stability during degradation and to match modulus and strength to that of bone, introduction of a reinforcing structure for those applications to plate fixation through the creation of an interpenetrating network might be a feasible approach. In this study, poly(lactide-co-glycolide) (PLGA), was the major structural element to be strengthened by a three-dimensional network or "scaffold" of another biodegradable polymer, poly(propylene fumarate) (PPF). PPF would be crosslinked with a biocompatible vinyl monomer, vinylpyrrolidone (VP). Three different approaches were tested to create dimensionally stable bone plates. First, via in situ crosslinking of PPF in the presence of PLGA. Secondly, by blending of precrosslinked PPF with PLGA. Finally, by simultaneous crosslinking and molding of the PLGA, PPF and VP. These were compared against extruded or compression molded PLGA controls. Results showed that compression molding at room temperature followed by crosslinking under pressure at elevated temperature and subsequently by gamma-irradiation appeared to yield the most favorable product as judged by swelling, hardness and flexural strength data. The composition of the implant material, PLGA(3):PPF(1):VP(0.7), appeared to be suitable and formed the compositional and procedural basis for in vivo biocompatibility studies.  相似文献   

18.
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.  相似文献   

19.
In this project concerning the development of new endovascular stents, which controlled the release of pharmacological molecules, we prepared biodegradable and biocompatible macromonomers of poly (lactic acid), with controlled molar mass (600 g/mol), having a double bond allowing afterward the electrografting on metallic stent. This biodegradable layer has for role to improve the interface between the metal and the degradable polymer matrix which will be later deposited on the stent to assure a good liberation of the active principle (DES). We tested the feasibility of the electrografting of this layer with PLA, its in vitro then in vivo degradation as well as the recolonisation of the stent by cells. The positive results obtained in this study are completely encouraging for the development of new DES.  相似文献   

20.
The results of a study of the effects of hydroxyl groups at positions, 2, 4 and 6 of the amino sugar on the activity of daunorubicin, adriamycin, and stereoisomers are presented. While the 4′-deoxy derivatives showed a slightly increased biological activity as compared with the parent compounds, the derivatives containing an additional hydroxyl group were less active. It is suggested that the changes in the polarity and in the DNA binding ability of these derivatives are the main factors accounting for the difference in the in vivo activity. The possible relations among the pKa values, the DNA binding properties, and the cellular uptake of the compounds are discussed with particular reference to their therapeutic effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号