首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suckling rats were injected subcutaneously with doses of L-ethionine (0.1 mumole/g body wt) at intervals of 12 hr. In the latter group, phenylalanine hydroxylase was effectively inhibited in vivo resulting in hyperphenylalaninemia and phenylketonuria. Due to the well-known sex-specific differences in L-ethionine metabolism female rats were much more affected by chronic administration of L-ethionine. The underlying mechanism of enzyme inhibition by ethionine could be disturbed protein synthesis and impaired protein phosphorylation, which was suggested by pronounced decreases in ATP content in liver. In the high dosage group depletions mainly of the branched-chain amino acids and lysine occurred in serum and brain, whereas the concentrations of methionine and tryptophan were increased. Tyrosine tended to be decreased in the course of hyperphenylalaninemia. Hyperphenylalaninemia and other resulting amino acid imbalances obviously impaired brain development during the early postnatal period. Concomitantly with reductions in protein concentrations, the activity of cathepsin D, a major intralysosomal acid proteinase, was increased in brain, suggesting also higher protein catabolism in brain. Side effects of this treatment, however, were higher mortality, loss of body weight, and a general impression of delayed development, resembling a state of undernutrition to some extent. These obvious side effects of ethionine limit the usefulness of ethionine as a suitable model for classic phenylketonuria in suckling rats.  相似文献   

2.
The kinetic and immunologic properties of phenylalanine hydroxylase of adult rat liver were compared to the properties of the similar enzyme present in cultured H4-II-E-C3 hepatoma cells. The enzymes from the two sources could not be distinguished by the Km values for either phenylalanine or 6,7-dimethyltetrahydropterin. Analysis by double immunodiffusion showed that phenylalanine hydroxylase from the two sources had identical immunologic determinants, but immunotitrations revealed a small but significant difference between the enzyme of the normal adult rat liver and the enzyme of cultured hepatoma cells. The results of double immunodiffusion and immunotitration experiments indicated also that the increased levels of phenylalanine hydroxylase seen in the hepatoma cells grown in the presence of hydrocortisone resulted from the accumulation of enzyme protein, but it could not be decided whether this accumulation resulted from an increased rate of synthesis or decreased rate of degradation.  相似文献   

3.
Phenylalanine hydroxylase was prepared from human foetal liver and purified 800-fold; it appeared to be essentially pure. The phenylalanine hydroxylase activity of the liver was confined to a single protein of mol.wt. approx. 108000, but omission of a preliminary filtration step resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. Human adult and full-term infant liver also contained a single phenylalanine hydroxylase with molecular weights and kinetic parameters the same as those of the foetal enzyme; foetal, newborn and adult phenylalanine hydroxylase are probably identical. The K(m) values for phenylalanine and cofactor were respectively one-quarter and twice those found for rat liver phenylalanine hydroxylase. As with the rat enzyme, human phenylalanine hydroxylase acted also on p-fluorophenylalanine, which was inhibitory at high concentrations, and p-chlorophenylalanine acted as an inhibitor competing with phenylalanine. Iron-chelating and copper-chelating agents inhibited human phenylalanine hydroxylase. Thiol-binding reagents inhibited the enzyme but, as with the rat enzyme, phenylalanine both stabilized the human enzyme and offered some protection against these inhibitors. It is hoped that isolation of the normal enzyme will further the study of phenylketonuria.  相似文献   

4.
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet.Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with l-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.  相似文献   

5.
The plasma concentration of phenylalanine and tyrosine decreases in normal rats during the first few postnatal days; subsequently, the concentration of phenylalanine remains more or less constant, whereas that of tyrosine exhibits a high peak on day 13. The basal concentrations of the two amino acids were not altered by injections of thyroxine or cortisol, except in 13-day-old rats, when an injection of cortisol decreased the concentration of tyrosine. In young rats (13-15 days old), treatment with cortisol increased the activity of phenylalanine hydroxylase in the liver (measured in vitro) and accelerated the metabolism of administered phenylalanine: the rate constant of the disappearance of phenylalanine from plasma and the initial increase in tyrosine in plasma correlated quantitatively with the activity of phenylalanine hydroxylase in the liver. In adult rats, the inhibition of this enzyme (attested by assay in vitro) by p-chlorophenylalanine resulted in a proportionate decrease in tyrosine formation from an injection of phenylalanine. However, the quantitative relationship between liver phenylalanine hydroxylase activity and phenylalanine metabolism within the group of young rats was different from that observed among adult rats.  相似文献   

6.
Effect of a phenylalanine (Phe)-free diet on body weight, nitrogen balance and plasma free Phe levels were studied with male White Leghorn aged 2 weeks, 6, 12 and 15 months. Effects of feeding an isoleucine (Ile)- or amino acid-free diet and fasting on plasma amino acid levels in 15-month-old roosters were also studied.

Two-week-old chicks lost appetite for the Phe-free diet and their body weights decreased gradually. Six-month-old cockerels consumed the Phe-free diet completely but could not maintain normal growth rate and positive nitrogen balances. Twelve- and 15-month-old roosters maintained their body weights and nitrogen equilibrium on the Phe-free diet.

Plasma Phe levels of 2-week- and 6-month-old fowls at the 6th hr after the last feeding of the Phe-free diet did not decrease significantly compared to those of the control groups. However, plasma Phe levels of 12- and 15-month-old roosters decreased rapidly within a day on the Phe-free diet. Fasting resulted in a significant increase in plasma amino acid concentrations whereas feeding an Ile- or amino acid-free diet resulted in concentrations of plasma amino acids which were not lower than those observed in the control roosters.  相似文献   

7.
Two experiments were conducted to evaluate effects of keratinase for growing and nursery pigs. In Exp. 1, six pigs (32.3 +/- 2.8 kg body weight), fitted with a simple T-cannula at the distal ileum, were assigned to one of two 3 x 3 Latin squares involving three periods and three diets including a basal diet and the same diets supplemented with 0, 0.05 or 0.1% keratinase. Dietary keratinase supplementation increased the apparent ileal digestibility of crude protein (CP), arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, alanine, glutamic acid and proline (p < 0.05). Digestibility coefficients did not differ between pigs fed 0.05 and 0.1% keratinase. In Exp. 2, 24 piglets weaned at 30 +/- 2 d of age were used in a 2 x 2 factorial design experiment with two CP concentrations (19 vs. 22%) and two levels of keratinase supplementation (0 vs. 0.05%). Keratinase supplementation increased (p < 0.05) average daily gain, serum arginine concentration and loin muscle area but decreased (p < 0.05) serum interleukin-10 concentrations. The reduction in dietary CP level decreased (p < 0.05) serum urea nitrogen concentrations, isoleucine, serine and proline concentrations, but increased serum arginine concentrations. Few interactions between keratinase supplementation and dietary CP concentration were observed. This study indicated that dietary keratinase supplementation improved apparent ileal amino acid digestibility for growing pigs and had a positive effect on weight gain, immune response and loin muscle area for nursery pigs.  相似文献   

8.
In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.  相似文献   

9.
An electrophoretically homogeneous protein has been isolated from human liver autoptats, using a procedure employed for the isolation of phenylalanine hydroxylase from rat liver. The procedure includes chromatography of liver extracts on phenyl-Sepharose and subsequent purification on DEAE-Toyopearl. The activity of phenylalanine hydroxylase in the autoptats was markedly decreased in comparison with that in bioptats. The isolated protein possessed no enzymatic activity. However, the subunit composition of the protein, the molecular masses of protein subunits (55 and 57 kD) and the amino acid composition were close to those of the human enzyme. Antibodies to the protein inhibited the phenylalanine hydroxylase activity in human liver bioptats and weakly inhibited the rat enzyme. The experimental results suggest that the structural organization of phenylalanine hydroxylase does not alter as a result of the loss of enzymatic activity in cadaverous human liver.  相似文献   

10.
Administration of hepatocarcinogens to rats results in an increase in tRNA methyltransferase activity in the target tissues. Ethionine is active as a carcinogen only in female rats and only in females is this increase in enzyme activity seen. However, ethionine also causes the formation of methyl-deficient tRNA in the liver. Other hepatocarcinogens do not do this. Ethionine is equally effective in this action in males and females. Thus, the two actions of ethionine are completely separable, and the methyl-deficiency of tRNA is caused by an activity not identical with the carcinogenic one.  相似文献   

11.
12.
异育银鲫幼鱼对饲料苯丙氨酸需求的研究   总被引:2,自引:0,他引:2  
通过55d的生长实验确定异育银鲫幼鱼对饲料苯丙氨酸的适宜需求。实验结果表明,饲料苯丙氨酸含量为1.09%时,异育银鲫幼鱼的增重率、特定生长率和饲料效率均到达最大值,分别为194.50%、1.96%/d、37.74%,而摄食率为最小值4.76%/d。饲料添加适宜水平的苯丙氨酸也显著提高其蛋白质效率、蛋白质沉积率和能量沉积率,均以1.09%处理组显著高于其他各处理组(P0.05)。根据异育银鲫幼鱼特定生长率与饲料苯丙氨酸水平的剂量效应关系,通过非线性回归可以得出饲料酪氨酸为1.04%时异育银鲫幼鱼的苯丙氨酸最适需求量占饲料1.09%,占饲料蛋白的3.02%。    相似文献   

13.
Maximum inhibition of phenylalanine hydroxylase activity in the liver (85%) and in the kidney (50%) of suckling rats required the administration of over 9 mumol of p-chlorophenylalanine/10g body weight. Despite the decrease in the total activity from 184 to 34 units per 10g body weight, the injection of as much as 26 mumol of phenylalanine was required for its concentration in plasma to be still considerably elevated 12h later. In rats injected with p-chlorophenylalanine every 48h and with phenylalanine every 24h from 3 to 18 days of age, the hepatic and renal phenylalanine hydroxylase remained inhibited, whereas the activities of three other hepatic enzymes were unchanged. There was about 20% inhibition of brain and body growth, but no interference with the developmental formation of several cerebral enzymes (four dehydrogenases, hexokinase and glutaminase) was detected. In the course of this prolonged treatment, the phenylalanine concentrations in plasma increased gradually; on day 2 and day 8 (measured 12h after the last injection) they were 800 and 1395 nmol/ml respectively; on day 15, 12 and 18h after the usual injection, the values were 2030 and 1030 respectively as opposed to the 96 nmol in untreated rats. This degree of hyperphenylalaninaemia, persisting for 18h per day throughout a critical period of development, fulfils the primary criterion of a suitable animal model for phenylketonuria.  相似文献   

14.
Two-dimensional polyacrylamide gel analyses of purified human and monkey liver phenylalanine hydroxylase reveal that the enzyme consists of two different apparent molecular weight forms of polypeptide, designated H (Mr = 50,000) and L (Mr = 49,000), each containing three isoelectric forms. The two apparent molecular weight forms, H and L, represent the phosphorylated and dephosphorylated forms of phenylalanine hydroxylase, respectively. After incubation of purified human and monkey liver enzyme with purified cAMP-dependent protein kinase and [gamma-32P]ATP, only the H forms contained 32P. Treatment with alkaline phosphatase converted the phenylalanine hydroxylase H forms to the L forms. The L forms but not the H forms could be phosphorylated on nitrocellulose paper after electrophoretic transfer from two-dimensional gels. Phosphorylation and dephosphorylation of human liver phenylalanine hydroxylase is not accompanied by significant changes in tetrahydrobiopterin-dependent enzyme activity. Peptide mapping and acid hydrolysis confirm that the apparent molecular weight heterogeneity (and charge shift to a more acidic pI) in human and monkey liver enzyme results from phosphorylation of a single serine residue. However, phosphorylation by the catalytic subunit of cAMP-dependent protein kinase does not account for the multiple charge heterogeneity of human and monkey liver phenylalanine hydroxylase.  相似文献   

15.
Lysine transfer RNA2 is the major target for L-ethionine in the rat   总被引:1,自引:0,他引:1  
Ethionine, a hepatocarcinogen, ethylates macromolecules in vivo especially tRNA of rat liver. When rats were injected with L-[ethyl-3H]ethionine, the tRNA fraction of the liver was found to be labeled. One tRNA with the highest specific activity was purified and identified as lysine-tRNA2.  相似文献   

16.
1. The effects of single doses of ethionine or sodium salicylate on the nicotinamide-adenine dinucleotide content of rat liver have been studied. 2. There was no significant change in the sum of NAD+NADH(2) during the early period (0-2hr.) of the liver injury induced by ethionine but there was a decrease in this value of approx. 30% by 4hr. after administration. 3. Ethionine had no significant effect on the NADP+NADPH(2) during the first 2hr. period after administration. The sum then decreased to a value approx. 70% of the control by 3hr. after dosing but showed a partial recovery at the 4hr. period before decreasing again in later stages of the poisoning. 4. Salicylate produced a very rapid decrease in the NADP+NADPH(2) in the liver after intraperitoneal injection. After 1hr. the decrease was approx. 30% of the initial value; the sum slowly returned towards the normal range during the following 4hr. 5. A high parenteral dose of salicylate was found to cause only a small depression in the concentration of ATP in rat liver in contrast with the rapid depletion produced by ethionine. 6. These results are discussed in terms of the liver disturbances produced by ethionine and salicylate.  相似文献   

17.
We explored the mechanism(s) of increased aromatic amino acids concentrations in liver cirrhosis using phenylalanine (Phe) and tyrosine (Tyr) isotope infusions in male patients with compensated cirrhosis (five in Child Class A, three in B) and in eight matched healthy controls, in both postabsorptive and fed states. After a baseline period, a standard liquid mixed meal was fed continuously over 4 h. Both a "plasma" and an intracellular model were employed. In the patients, steady-state Phe and Tyr concentrations were approximately 30-50% greater, and rates of Phe appearance (Ra) (plasma model), Tyr Ra, and Phe hydroxylation (Hy; both models) were approximately 25 to >100% greater than in controls in both states. Meal ingestion increased (P<0.05 or less vs. basal) Phe and Tyr concentrations, Phe and Tyr Ra, Phe Hy, and % Tyr Ra not deriving from Hy in both groups. Hy and Tyr Ra remained>50% greater (P<0.04 to P<0.01) in patients, whereas Phe Ra was more modestly increased. Phe utilization for protein synthesis increased similarly in both groups. Tyr clearance was normal, whereas Phe clearance tended to be lower (P=0.09, intracellular model) in the patients. In summary, in compensated liver cirrhosis studied under fasted and fed states, 1) Tyr Ra is increased; 2) Phe Hy and Phe Ra (plasma model) are increased; 3) Tyr clearance is normal; and 4) Phe clearance is slightly decreased. In conclusion, in cirrhosis increased total tyrosine Ra and hydroxylation contribute to fasting and postmeal hypertyrosinemia, whereas the mechanism(s) responsible for the hyperphenylalaninemia may include both increased production and decreased disposal.  相似文献   

18.
Pregnant Wistar rats fed control and Zn-deficient diets received daily oral doses of 0, 100, and 300 mg/kg sodium valproate from d 16 to 20 of gestation. Only the highest valproate doses induced a small reduction in fetal body weight in the normally fed group. Zinc deficiency caused a drastic reduction in maternal and only a small reduction in fetal serum Zn concentrations. Valproate treatment had no effect on maternal and fetal serum Zn concentrations. Valproate reduced fetal liver Zn content only in the normally fed group. The reduction of liver Zn content resulted from the reduction of Zn-metallothionein. Valproate did not affect total Zn and Zn-metallothionein in kidneys. Three percent of the Zn-deficient fetuses developed hydronephrosis and hydrops. Valproate treatment drastically enhanced the occurrence of fetal hydronephrosis and hydrops. Valproate induced fetal liver necroses, independent of Zn nutrition.  相似文献   

19.
Phenylketonuria (PKU) is biochemically characterized by the accumulation of phenylalanine (Phe) and its metabolites in tissues of affected children. Neurological damage is the clinical hallmark of PKU, and Phe is considered the main neurotoxic metabolite in this disorder. However, the mechanisms of neurotoxicity are poorly known. The main objective of the present work was to measure the activities of the mitochondrial respiratory chain complexes (RCC) and succinate dehydrogenase (SDH) in brain cortex of Wistar rats subjected to chemically induced hyperphenylalaninemia (HPA). We also investigated the in vitro effect of Phe on SDH and RCC activities in the cerebral cortex of 22-day-old rats. HPA was induced by subcutaneous administration of 2.4 mol/g body weight -methylphenylalanine, a phenylalanine hydroxylase inhibitor, once a day, plus 5.2 M/g body weight phenylalanine, twice a day, from the 6th-21st postnatal day. The results showed a reduction of SDH and complex I + III activity in brain cortex of rats subjected to HPA. We also verified that Phe inhibited the in vitro activity of complexes I + III, possibly by competition with NADH. Considering the importance of SDH and RCC for the maintenance of energy supply to brain, our results suggest that energy deficit may contribute to the Phe neurotoxicity in PKU.  相似文献   

20.
The effects of orotic acid supplementation to casein, egg protein, soy protein and wheat gluten diets on the lipids of liver and serum were compared. When orotic acid was added, the contents of total lipids and triacylglycerol in the liver of the casein group were significantly higher or tended to be higher than those of the other three dietary groups. Dietary orotic acid had no effect on the food intake. The liver weight, and liver total lipids, triacylglycerol, cholesterol and phospholipids were increased or tended to be increased by the addition of orotic acid. The serum triacylglycerol level was decreased by the addition of orotic acid to either the casein or soy protein diet. Thus, the response to liver lipid accumulation induced by orotic acid feeding depended on the dietary protein type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号