首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

2.
Oxoferrylporphyrin cation radical complexes were generated by m-chloroperoxybenzoic acid oxidation of the chloro and trifluoromethanesulfonato complexes of tetramesitylporphyrinatoiron(III) [(TMP)Fe] and the trifluoromethanesulfonato complex of tetra(2,6-dichlorophenyl)porphyrinatoiron(III) [TPP(2,6-Cl)Fe]. Coupling between ferryl iron (S = 1) and porphyrin radical (S' = 1/2) spin systems was investigated by M?ssbauer and EPR spectroscopy. The oxoferrylporphyrin cation radical systems generated from the TMP complexes show strong ferromagnetic coupling. Analysis of the magnetic M?ssbauer spectra, using a spin Hamiltonian explicitly including a coupling tensor J, suggests an exchange-coupling constant J greater than 80 cm-1. The EPR spectra show non-zero rhombicity, the origin of which is discussed in terms of contributions from the usual zero-field effects of iron and from iron-radical spin-dipolar interaction. A consistent estimate of zero-field splitting parameter D approximately + 6 cm-1 was obtained by EPR and M?ssbauer measurements. EPR and M?ssbauer parameters are shown to be slightly dependent on solvent, but not on the axial ligand in the starting (TMP)Fe complex. In contrast to the TMP complex, the oxoferrylporphyrin cation radical system generated from [TPP(2,6-Cl)FeOSO2CF3] exhibits M?ssbauer and EPR spectra consistent with weak iron-porphyrin radical coupling of magnitude of J approximately 1 cm-1.  相似文献   

3.
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in bovine heart cytochrome c oxidase (COX) and nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the existence of Cu-Cu interaction in both enzymes. C-band (4.5 GHz) proves to be a particularly good frequency complementing the spectra of COX and N2OR recorded at 2.4 and 3.5 GHz. Both the high and low field region of the EPR spectra show the presence of a well-resolved 7-line pattern consistent with the idea of a binuclear Cu center in COX and N2OR. Based on this assumption consistent g-values are calculated for gz and gx at four frequencies. No consistent g-values are obtained with the assumption of a 4-line pattern indicative for a mononuclear Cu site.  相似文献   

4.
In this paper we report a variable temperature EPR investigation on auto-assembling inclusion compounds of tris(o-phenylenedioxy)cyclotriphosphazene (TPP), the nitroxide radical methyl ester of the 16-doxyl-stearic acid (16-dox), and diamagnetic co-guests of various polarities. By playing with the nature of the co-guest and the concentration of the radical we obtained radicals isolated, or in 1D clusters. Local order, dynamics and orientation of the guests have been obtained by simulations of the spectra of spin-carrying guests envisaged as probes. For the simulations, intra-channel and inter-channel radical pairs and trimers magnetic interactions have been modellized. The interest of similar compounds for 1D magnetic materials is discussed.  相似文献   

5.
M D Ballinger  P A Frey  G H Reed 《Biochemistry》1992,31(44):10782-10789
Electron paramagnetic resonance (EPR) spectroscopy has been used to characterize an organic radical that appears in the steady state of the reaction catalyzed by lysine 2,3-aminomutase from Clostridium SB4. Results of a previous electron paramagnetic resonance (EPR) study [Ballinger, M. D., Reed, G. H., & Frey, P. A. (1992) Biochemistry 31, 949-953] demonstrated the presence of EPR signals from an organic radical in reaction mixtures of the enzyme. The materialization of these signals depended upon the presence of the enzyme, all of its cofactors, and the substrate, lysine. Changes in the EPR spectrum in response to deuteration in the substrate implicated the carbon skeleton of lysine as host for the radical center. This radical has been further characterized by EPR measurements on samples with isotopically substituted forms of lysine and by analysis of the hyperfine splittings in resolution-enhanced spectra by computer simulations. Changes in the hyperfine splitting patterns in EPR spectra from samples with [2-2H]lysine and [2-13C]-lysine show that the paramagnetic species is a pi-radical with the unpaired spin localized primarily in a p orbital on C2 of beta-lysine. In the EPR spectrum of this radical, the alpha-proton, the beta-nitrogen, and the beta-proton are responsible for the hyperfine structure. Analysis of spectra for reactions initiated with L-lysine, [3,3,4,4,5,5,6,6-2H8]lysine, [2-2H]lysine, perdeuteriolysine, [alpha-15N]lysine, and [alpha-15N,2-2H]lysine permit a self-consistent assignment of hyperfine splittings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Role of the divalent metal cation in the pyruvate oxidase reaction   总被引:3,自引:0,他引:3  
Purified pyruvate oxidase requires a divalent metal cation for enzymatic activity. The function of the divalent metal cation was studied for unactivated, dodecyl sulfate-activated, and phosphatidylglycerol-activated oxidase. Assays performed in the presence of Mg2+, CA2+, Zn2+, Mn2+, Ba2+, Ni2+, Co2+, Cu2+, and Cr3+ in each of four different buffers, phosphate, 1,4-piperazinediethanesulfonic acid, imidazole, and citrate, indicate that any of these metal cations will fulfill the pyruvate oxidase requirement. Extensive steady state kinetics data were obtained with both Mg2+ and Mn2+. All the data are consistent with the proposition that the only role of the metal is to bind to the cofactor thiamin pyrophosphate (TPP) and that it is the Me2+-TPP complex which is the true cofactor. Values of the Mg2+ and Mn2+ dissociation constants with TPP were determined by EPR spectroscopy and these data were used to calculate the Michaelis constant for the Me2+-TPP complexes. The results show that the Michaelis constants for the Me2+-TPP complexes are independent of the metal cation in the complex. Fluorescence quenching experiments show that the Michaelis constant is equal to the dissociation constant of the Mn2+-TPP complex with the enzyme. It was also shown that Mn2+ will only bind to the enzyme in the presence of TPP and that one Mn2+ binds per subunit. Steady state kinetics experiments with Mn2+ were more complicated than those obtained with Mg2+ because of the formation of an abortive Mn2+-pyruvate complex. Both EPR and steady state kinetics data indicated complex formation with a dissociation constant of about 70 mM.  相似文献   

7.
Various tyrosyl radicals generated by reaction of both native and indomethacin-inhibited ovine prostaglandin H synthase-1 with ethyl hydrogen peroxide were examined by using high-field/high-frequency EPR spectroscopy. The spectra for the initially formed tyrosyl radical commonly referred to as the "wide-doublet" species and the subsequent "wide-singlet" species as well as the indomethacin-inhibited "narrow-singlet" species were recorded at several frequencies and analyzed. For all three species, the g-values were distributed. In the case of the wide doublet, the high-field EPR spectra indicated that dominant hyperfine coupling was likely to be also distributed. The g(x)-values for all three radicals were found to be consistent with a hydrogen-bonded tyrosyl radical. In the case of the wide-doublet species, this finding is consistent with the known position of the radical and the crystallographic structure and is in contradiction with recent ENDOR measurements. The high-field EPR observations are consistent with the model in which the tyrosyl phenyl ring rotates with respect to both the protein backbone and the putative hydrogen bond donor during evolution from the wide-doublet to the wide-singlet species. The high-field spectra also indicated that the g-values of two types of narrow-singlet species, self-inactivated and indomethacin-inhibited, were likely to be different, raising the possibility that the site of the radical is different or that the binding of the inhibitor perturbs the electrostatic environment of the radical. The 130 GHz pulsed EPR experiments performed on the wide-doublet species indicated that the possible interaction between the radical and the oxoferryl heme species was very weak.  相似文献   

8.
It is shown that the relative amount of the holoenzyme in the highly purified pyruvate dehydrogenase complex from the bovine brain is higher when the enzyme activity is assayed in the reaction of nonoxidative formation of acetaldehyde as compared to the pyruvate: NAD+ reductase reaction. The S0.5 values for thiamine pyrophosphate are as following: (TPP) (0.314 +/- 0.22) x 10(-7) M with reaction of nonoxidative formation of acetaldehyde, (0.188 +/- 0.08) x 10(-6) M and (1.65 +/- 1.16) x 10(-6) M in case of the pyruvate: NAD+ reductase reaction. TPP in the concentration of (0.5-6.0) x 10(-7) M completely protects the sites of nonoxidative formation of acetaldehyde from modification by the coenzyme analogs, 4'-oxythiamine pyrophosphate and tetrahydrothiamine pyrophosphate. However, the pyruvate: NAD+ reductase activity of the pyruvate dehydrogenase complex is inhibited in this case by 30-34%. The data obtained suggest that in contrast to the pyruvate: NAD+ reductase reaction the conversion of pyruvate to acetaldehyde occurs by the sites which tightly bound TPP.  相似文献   

9.
Mitochondria isolated from preclimacteric avocado fruit oxidize pyruvate at a much lower rate than those separated from climacteric fruit. The external addition of thiamine pyrophosphate (TPP) increased the rate of pyruvate oxidation in both cases.The study of the influence of TPP on the rate of oxidation of malate by mitochondria obtained from both preclimacteric and climacteric fruit indicated that the effect of this cofactor could be understood by assuming that malate was converted to pyruvate. TPP stimulation of malate oxidation was prevented by arsenite, an inhibitor of keto acid oxidation. The addition of glutamate increased the rate of malate oxidation through the transamination of oxaloacetate. This suggests that the rate of oxidation of malate is highly dependent upon mechanisms which remove oxaloacetate efficiently.Incubation of mitochondria from preclimacteric fruit with malate-U-(14)C resulted in the labeling of oxaloacetate and the accumulation of labeled pyruvate. Addition of TPP to this system induced the rapid formation of citrate. This conversion was completely inhibited by arsenite.The results indicate that the ability to carry out the oxidative decarboxylation of alpha-ketoacids improves as the ripening process progresses. The idea was advanced that TPP available to the mitochondria plays an important controlling role.  相似文献   

10.
EPR spectroscopy of semi-methemerythrin   总被引:2,自引:0,他引:2  
EPR spectra of semi-met forms of octameric hemerythrin from Themiste zostericola, prepared by one electron reduction of methemerythrin or by one electron oxidation of deoxyhemerythrin, have been visualized at liquid helium temperatures. The spectrum of that prepared by one electron reduction has principal g-values of 1.96 +/- 0.01, 1.88 +/- 0.01, and 1.67 +/- 0.02 while that obtained by one electron oxidation has g = 1.95 +/- 0.01, 1.72 +/- 0.01, and 1.68 +/- 0.02. The amplitude of either spectrum decreases with time on incubation at room temperature according to a first order rate with t 1/2 = 5-8 min, apparently because of an intramolecular disproportionation. Similar EPR spectra have been obtained with semi-metmyohemerythrin of T. zostericola and with the octameric semi-met form of Phascolopsis gouldii. However, these forms disproportionate to a much lesser degree. The azide adduct of the octameric semi-met form of T. zostericola has g-values of 1.94 +/- 0.01, 1.85 +/- 0.01, and 1.57 +/- 0.02. Its EPR spectrum differs somewhat from those of the azide adducts of the octamer of P. gouldii and the monomer of T. zostericola although all are resistant to disproportionation. Methemerythrin and deoxyhemerythrin have no EPR spectra even at liquid helium temperature.  相似文献   

11.
The kinetic behavior of pig heart pyruvate dehydrogenase complex (PDC) containing bound endogenous thiamin pyrophosphate (TPP) was affected by exogenous TPP. In the absence of exogenous TPP, a lag phase of the PDC reaction was observed. TPP added to the PDC reaction medium containing Mg2+ led to a disappearance of the lag phase, inducing strong reduction of the Km value for pyruvate (from 76.7 to 19.0 microM) but a more moderate decrease of Km for CoA (from 12.2 to 4.3 microM) and Km for NAD+ (from 70.2 to 33.6 microM), with no considerable change in the maximum reaction rate. Likewise, thiamin monophosphate (TMP) decreased the Km value of PDC for pyruvate, but to a lesser extent (from 76.7 to 57.9 microM) than TPP. At the unsaturating level of pyruvate, the A50 values for TPP and TMP were 0.2 microM and 0.3 mM, respectively. This could mean that the effect of TPP on PDC was more specific. In addition, exogenous TPP changed the UV spectrum and lowered the fluorescence emission of the PDC containing bound endogenous TPP in its active sites. The data obtained suggest that TPP plays, in addition to its catalytic function, the important role of positive regulatory effector of pig heart PDC.  相似文献   

12.
Recently developed theoretical methods to predict EPR and M?ssbauer parameters open the way for close interactions between theorists and experimentalists to elucidate the geometric and electronic structures of metalloenzymes and model complexes and to obtain insight into their reactive properties. Spectral calculations (g-values, hyperfine couplings, zero-field splittings, isomer shifts and quadrupole splittings) are also a means to validate theoretical approaches and therefore complement the prediction of geometries, reaction energies and transition states.  相似文献   

13.
Tetrahydrothiamin pyrophosphate, an analogue of thiamin pyrophosphate (TPP) in which the thiazolium ring has been reduced to a thiazolidine ring, was prepared by borohydride reduction of TPP. It consists of four stereoisomers, comprising two diastereomers each of which is a racemic mixture, generated by the introduction of two chiral centers on the thiazolidine ring. The major and minor diastereomers were separated and inferred to be of the cis and trans configurations, respectively, from a study of the nuclear Overhauser effects in the 1H NMR spectrum of the simpler tetrahydrothiamin. Tetrahydro-TPP behaves as a mixture of potent inhibitors of the pyruvate decarboxylase (E1) component of the pyruvate dehydrogenase complex from Escherichia coli. The site of binding is probably the TPP-binding site on E1, and the Kd for each of the four stereoisomers was estimated. The cis isomers of tetrahydro-TPP bind more tightly than does TPP, whereas the trans isomers appear to bind with about the same Kd as TPP. Sodium borohydride caused a rapid inhibition of E1 activity in the presence of TPP, believed to be due to reaction of borohydride with enzyme-bound TPP. The experiments are consistent with an enhancement of the reactivity of the thiazole ring of TPP when bound to the catalytic site of E1, which could be due to polarization of the greater than +N=C bond near a hydrophobic or positively charged region of the protein. A spontaneous reactivation occurred after the initial inhibition by borohydride, attributable to a weakly binding inhibitor, not tetrahydro-TPP, being formed at the catalytic site.  相似文献   

14.
The adenosylcobalamin coenzyme-dependent ethanolamine deaminase from Salmonella typhimurium catalyzes the deamination of aminoethanol to acetaldehyde and ammonia. The radical intermediate observed during steady state turnover of substrate aminoethanol has been characterized by continuous wave electron paramagnetic resonance (EPR) spectroscopy [J. Am. Chem. Soc. 121 (1999) 10522]. This study presents simulations of EPR spectra of this radical intermediate. Quantitative fits to the EPR spectra are achieved with a model of isotropic exchange and magnetic dipolar interaction between the substrate-derived radical and the Co(II) in the corrin ring. The simulated parameters are compared with those of substrate analog 2-aminopropanol-derived radical in the same enzyme. The comparison confirms that the aminoethanol-derived product radical interacts more weakly with the Co(II) than the 2-aminopropanol-derived radical and suggests that the reduction of isotropic exchange between the aminoethanol-derived product radical and the Co(II) is probably due to orientational-dependent wave function overlap. Successful fits to the radical line shapes of different isotope substitutions unequivocally establish that the observed radical intermediate is an pi-electron-based product radical. The derived principal hyperfine values for the 13C(alpha) and 1H(alpha) nucleus are consistent with previous electron nuclear double resonance (ENDOR) studies on similar radicals, thus providing reliable experimental hyperfine coupling constants for comparison with quantum mechanical-based calculations to gain further insight into the molecular structure of the observed radical.  相似文献   

15.
Furdui C  Ragsdale SW 《Biochemistry》2002,41(31):9921-9937
Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the coenzyme A (CoA)-dependent oxidative decarboxylation of pyruvate. In many autotrophic anaerobes, PFOR links the Wood-Ljungdahl pathway to glycolysis and to cell carbon synthesis. Herein, we cloned and sequenced the M. thermoacetica PFOR, demonstrating strong structural homology with the structurally characterized D. africanus PFOR, including the presence of three [4Fe-4S] clusters per monomeric unit. The PFOR reaction includes a hydroxyethyl-thiamin pyrophosphate (HE-TPP) radical intermediate, which forms rapidly after PFOR reacts with pyruvate. This step precedes electron transfer from the HE-TPP radical intermediate to an intramolecular [4Fe-4S] cluster. We show that CoA increases the rate of this redox reaction by 10(5)-fold. Analysis by Marcus theory indicates that, in the absence of CoA, this is a true electron-transfer reaction; however, in its presence, electron transfer is gated by an adiabatic event. Analysis by the Eyring equation indicates that entropic effects dominate this rate enhancement. Our results indicate that the energy of binding CoA contributes minimally to the rate increase since the thiol group of CoA lends over 40 kJ/mol to the reaction, whereas components of CoA that afford most of the cofactor's binding energy contribute minimally. Major conformational changes also do not appear to explain the rate enhancement. We propose several ways that CoA can accomplish this rate increase, including formation of a highly reducing adduct with the HE-TPP radical to increase the driving force for electron transfer. We also consider the possibility that CoA itself forms part of the electron-transfer pathway.  相似文献   

16.
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis, a Class I peroxidase, exhibits high catalase activity and peroxidase activity with various substrates and is responsible for activation of the commonly used antitubercular drug, isoniazid (INH). KatG readily forms amino acid-based radicals during turnover with alkyl peroxides, and this work focuses on extending the identification and characterization of radicals forming on the millisecond to second time scale. Rapid freeze-quench electron paramagnetic resonance spectroscopy (RFQ-EPR) reveals a change in the structure of the initially formed radical in the presence of INH. Heme pocket binding of the drug and knowledge that KatG[Y229F] lacks this signal provides evidence for radical formation on residue Tyr(229). High field RFQ-EPR spectroscopy confirmed a tryptophanyl radical signal, and new analyses of X-band RFQ-EPR spectra also established its presence. High field EPR spectroscopy also confirmed that the majority radical species is a tyrosyl radical. Site-directed mutagenesis, along with simulations of EPR spectra based on x-ray structural data for particular tyrosine and tryptophan residues, enabled assignments based on predicted hyperfine coupling parameters. KatG mutants W107F, Y229F, and the double mutant W107F/Y229F showed alteration in type and yield of radical species. Results are consistent with formation of a tyrosyl radical reasonably assigned to residue Tyr(229) within the first few milliseconds of turnover. This is followed by a mixture of tyrosyl and tryptophanyl radical species and finally to only a tyrosyl radical on residue Tyr(353), which lies more distant from the heme. The radical processing of enzyme lacking the Trp(107)-Tyr(229)-Met(255) adduct (found as a unique structural feature of catalase-peroxidases) is suggested to be a reasonable assignment of the phenomena.  相似文献   

17.
After X-irradiation at room temperature, the radicals in L-alpha-amino-n-butyric acid HCl are CH3CH2CHCOOH. The beta- and alpha-hyperfine constants are typical of those found in amino acid radicals. On annealing at temperatures near 100 degrees C this carbon-centered radical in samples containing 1.5% cysteine converts to a perthiyl radical, RCH2S(1)S(2). The g-values for the perithiyl radical are 2.0024, 2.0257, and 2.0557. When the field is in the minimum g-value direction, the hyperfine splittings are 50 G for 33S(2) and 32 G for 33S(1).  相似文献   

18.
Thiamin pyrophosphate (TPP) is essential in carbohydrate metabolism in all forms of life. TPP-dependent decarboxylation reactions of 2-oxo-acid substrates result in enamine adducts between the thiazolium moiety of the coenzyme and decarboxylated substrate. These central enamine intermediates experience different fates from protonation in pyruvate decarboxylase to oxidation by the 2-oxoacid dehydrogenase complexes, the pyruvate oxidases, and 2-oxoacid oxidoreductases. Virtually all of the TPP-dependent enzymes, including pyruvate decarboxylase, can be assayed by 1-electron redox reactions linked to ferricyanide. Oxidation of the enamines is thought to occur via a 2-electron process in the 2-oxoacid dehydrogenase complexes, wherein acyl group transfer is associated with reduction of the disulfide of the lipoamide moiety. However, discrete 1-electron steps occur in the oxidoreductases, where one or more [4Fe-4S] clusters mediate the electron transfer reactions to external electron acceptors. These radical intermediates can be detected in the absence of the acyl-group acceptor, coenzyme A (CoASH). The π-electron system of the thiazolium ring stabilizes the radical. The extensively delocalized character of the radical is evidenced by quantitative analysis of nuclear hyperfine splitting tensors as detected by electron paramagnetic resonance (EPR) spectroscopy and by electronic structure calculations. The second electron transfer step is markedly accelerated by the presence of CoASH. While details of the second electron transfer step and its facilitation by CoASH remain elusive, expected redox properties of potential intermediates limit possible scenarios. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

19.
Four pyruvate-decarboxylating enzymes with thiamine pyrophosphate (TPP) cofactors catalyze the decarboxylation of the cyclopropyl substrate analog cyclopropylglyoxylate. Pyruvate: ferredoxin oxidoreductase, an archaebacterial enzyme which catalyzes oxidation of the hydroxyethyl-TPP (HETPP) intermediate by two one-electron transfers to an iron-sulfur center, generates the coenzyme A thioester of cyclopropylcarboxylic acid. A long-lived free radical, HETPP is thought to be an intermediate in the pyruvate to acetyl-CoA conversion; however, cleavage of the cyclopropyl ring was not detected. Pyruvate decarboxylase, pyruvate oxidase, and pyruvate dehydrogenase also generate the corresponding cyclopropyl products. The applicability of cyclopropyl substrate analogs as indicators of free-radical enzyme mechanisms is discussed in light of these results.  相似文献   

20.
J B Green 《FEBS letters》1989,246(1-2):1-5
Protein sequences of pyruvate decarboxylase (PDC) derived from cloned yeast (Saccharomyces cerevisiae) and bacterial (Zymomonas mobilis) genes were compared with each other and with sequence databases. Extensive sequence similarities were found between them and with two others: cytochrome-linked pyruvate oxidase from Escherichia coli and acetolactate synthase (ilvI in E. coli; ILV2 gene in S. cerevisiae). All catalyse decarboxylation of pyruvate using thiamine pyrophosphate (TPP) as cofactor. General overall similarity suggests common ancestry for these enzymes. None of the sequences was similar to the E1 component of pyruvate dehydrogenase from E. coli which also decarboxylates pyruvate with the help of TPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号