首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 329 bp DNA segment from both Anabaena variabilis and Anabaena PCC 7119 was amplified using the polymerase chain reaction (PCR). The sequences from the two cyanobacteria showed strong similarities to the corresponding part of the nifJ gene from Klebsiella pneumoniae and Enterobacter agglomerans. The present findings underline earlier results of enzymatic studies that heterocystous cyanobacteria possess a pyruvate: ferredoxin (flavodoxin) oxidoreductase (PFO). The nifJ gene segment could not be detected in the non-dinitrogenfixing, unicellular cyanobacterium Anacystis nidulans which is also in accord with previous findings from enzyme assays.  相似文献   

2.
The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.  相似文献   

3.
In cyanobacteria an increasing number of low potential electron carriers is found, but in most cases their contribution to metabolic pathways remains unclear. In this work, we compare recombinant plant-type ferredoxins from Anabaena sp. PCC 7120, encoded by the genes petF and fdxH, respectively, and flavodoxin from Anabaena sp. PCC 7119 as electron carriers in reconstituted in vitro assays with nitrogenase, Photosystem I, ferredoxin-NADP+ reductase and pyruvate-ferredoxin oxidoreductase. In every experimental system only the heterocyst ferredoxin catalyzed an efficient electron transfer to nitrogenase while vegetative cell ferredoxin and flavodoxin were much less active. This implies that flavodoxin is not able to functionally replace heterocyst ferredoxin. When PFO-activity in heterocyst extracts was reconstituted under anaerobic conditions, both ferredoxins were more efficient than flavodoxin, which suggested that this PFO was of the ferredoxin dependent type. Flavodoxin, synthesized under iron limiting conditions, replaces PetF very efficiently in the electron transport from Photosystem I to NADP+, using thylakoids from vegetative cells.Abbreviations BSA bovine serum albumin - FdxH heterocyst ferredoxin - Fld flavodoxin - FNR ferredoxin-NADP+ reductase - MV methyl viologen - PetF vegetative cell ferredoxin - PFO pyruvate-ferredoxin oxidoreductase - Pyr piruvate - PS I Photosystem I  相似文献   

4.
The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α‐ and β‐subunits of succinyl‐CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α‐ and β‐SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α‐ and β‐SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α‐ nor β‐SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain‐containing membrane‐associated protein and tetraspanin family surface protein, as well as soluble‐secreted β‐amylase‐1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α‐ and β‐SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica—Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium. Correspondence to: M. Müller  相似文献   

6.
The iron sulfur protein pyruvate: ferredoxin oxidoreductase (PFO) is central to energy metabolism in amitochondriate eukaryotes, including those with hydrogenosomes. Thus, revealing the evolutionary history of PFO is critical to understanding the origin(s) of eukaryote anaerobic energy metabolism. We determined a complete PFO sequence for Spironucleus barkhanus, a large fragment of a PFO sequence from Clostridium pasteurianum, and a fragment of a new PFO from Giardia lamblia. Phylogenetic analyses of eubacterial and eukaryotic PFO genes suggest a complex history for PFO, including possible gene duplications and horizontal transfers among eubacteria. Our analyses favor a common origin for eukaryotic cytosolic and hydrogenosomal PFOs from a single eubacterial source, rather than from separate horizontal transfers as previously suggested. However, with the present sampling of genes and species, we were unable to infer a specific eubacterial sister group for eukaryotic PFO. Thus, we find no direct support for the published hypothesis that the donor of eukaryote PFO was the common alpha-proteobacterial ancestor of mitochondria and hydrogenosomes. We also report that several fungi and protists encode proteins with PFO domains that are likely monophyletic with PFOs from anaerobic protists. In Saccharomyces cerevisiae, PFO domains combine with fragments of other redox proteins to form fusion proteins which participate in methionine biosynthesis. Our results are consistent with the view that PFO, an enzyme previously considered to be specific to energy metabolism in amitochondriate protists, was present in the common ancestor of contemporary eukaryotes and was retained, wholly or in part, during the evolution of oxygen-dependent and mitochondrion-bearing lineages.  相似文献   

7.
Most eukaryotes perform the oxidative decarboxylation of pyruvate in mitochondria using pyruvate dehydrogenase (PDH). Eukaryotes that lack mitochondria also lack PDH, using instead the O(2)-sensitive enzyme pyruvate : ferredoxin oxidoreductase (PFO), which is localized either in the cytosol or in hydrogenosomes. The facultatively anaerobic mitochondria of the photosynthetic protist Euglena gracilis constitute a hitherto unique exception in that these mitochondria oxidize pyruvate with the O(2)-sensitive enzyme pyruvate : NADP oxidoreductase (PNO). Cloning and analysis of Euglena PNO revealed that the cDNA encodes a mitochondrial transit peptide followed by an N-terminal PFO domain that is fused to a C-terminal NADPH-cytochrome P450 reductase (CPR) domain. Two independent 5.8-kb full-size cDNAs for Euglena mitochondrial PNO were isolated; the gene was expressed in cultures supplied with 2% CO(2) in air and with 2% CO(2) in N(2). The apicomplexan Cryptosporidium parvum was also shown to encode and express the same PFO-CPR fusion, except that, unlike E. gracilis, no mitochondrial transit peptide for C. parvum PNO was found. Recombination-derived remnants of PNO are conserved in the genomes of Saccharomyces cerevisiae and Schizosaccharomyces pombe as proteins involved in sulfite reduction. Notably, Trypanosoma brucei was found to encode homologs of both PFO and all four PDH subunits. Gene organization and phylogeny revealed that eukaryotic nuclear genes for mitochondrial, hydrogenosomal, and cytosolic PFO trace to a single eubacterial acquisition. These findings suggest a common ancestry of PFO in amitochondriate protists with Euglena mitochondrial PNO and Cryptosporidium PNO. They are also consistent with the view that eukaryotic PFO domains are biochemical relics inherited from a facultatively anaerobic, eubacterial ancestor of mitochondria and hydrogenosomes.  相似文献   

8.
Four pyruvate-decarboxylating enzymes with thiamine pyrophosphate (TPP) cofactors catalyze the decarboxylation of the cyclopropyl substrate analog cyclopropylglyoxylate. Pyruvate: ferredoxin oxidoreductase, an archaebacterial enzyme which catalyzes oxidation of the hydroxyethyl-TPP (HETPP) intermediate by two one-electron transfers to an iron-sulfur center, generates the coenzyme A thioester of cyclopropylcarboxylic acid. A long-lived free radical, HETPP is thought to be an intermediate in the pyruvate to acetyl-CoA conversion; however, cleavage of the cyclopropyl ring was not detected. Pyruvate decarboxylase, pyruvate oxidase, and pyruvate dehydrogenase also generate the corresponding cyclopropyl products. The applicability of cyclopropyl substrate analogs as indicators of free-radical enzyme mechanisms is discussed in light of these results.  相似文献   

9.
10.
In anaerobes, decarboxylation of pyruvate is executed by the enzyme pyruvate:ferredoxin oxidoreductase, which donates electrons to ferredoxin. The pyruvate:ferredoxin oxidoreductase and its homologues utilise many alternative substrates in bacterial anaerobes. The pyruvate:ferredoxin oxidoreductase from anaerobic protozoa, such as Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica have retained this diversity in usage of alternative keto acids for energy production utilising a wide variety of substrates. In addition to this flexibility, both T. vaginalis and G. duodenalis have alternative enzymes that are active in metronidazole-resistant parasites and that do not necessarily involve donation of electrons to characterized ferredoxins. Giardia duodenalis has two oxoacid oxidoreductases, including pyruvate:ferredoxin oxidoreductase and T. vaginalis has at least three. These alternative oxoacid oxidoreductases apparently do not share homology with the characterized pyruvate:ferredoxin oxidoreductase in either organism. Independently, both G. duodenalis and T. vaginalis have retained alternative oxoacid oxidoreductase activities that are clearly important for the survival of these parasitic protists.  相似文献   

11.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

12.
Hyperthermophilic microorganisms grow at temperatures of 90 °C and above and are a recent discovery in the microbial world. They are considered to be the most ancient of all extant life forms, and have been isolated mainly from near shallow and deep sea hydrothermal vents. All but two of the nearly twenty known genera are classified asArchaea (formerly archaebacteria). Virtually all of them are strict anaerobes. The majority are obligate heterotrophs that utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. Most also depend on the reduction of elemental sulfur to hydrogen sulfide (H2S) for significant growth. Peptide fermentation involves transaminases and glutamate dehydrogenase, together with several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Similarly, a novel pathway based on a partially non-phosphorylated Entner-Doudoroff scheme has been postulated to convert carbohydrates to acetate, H2 and CO2, although a more conventional Embden-Meyerhof pathway has also been identified in one saccharolytic species. The few hyperthermophiles known that can assimilate CO2 do so via a reductive citric acid cycle. Two So-reducing enzymes termed sulfhydrogenase and sulfide dehydrogenase have been purified from the cytoplasm of a hyperthermophile that is able to grow either with or without So. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of So has been proposed. However, the mechanisms by which So reduction is coupled to energy conservation in this organism and in obligate So-reducing hyperthermophiles is not known.Abbreviations ADH alcohol dehydrogenase (ADH) - AOR aldehyde ferredoxin oxidoreductase - FMOR formate ferredoxin oxidoreductase - FOR formaldehyde ferredoxin oxidoreductase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - GluOR glucose ferredoxin oxidoreductase - KGOR 2-ketoglutarate ferredoxin oxidoreductase - IOR indolepyruvate ferredoxin oxidoreductase - LDH lactate dehydrogenase - MPT molybopterin - POR pyruvate ferredoxin oxidoreductase - PLP pyridoxal-phosphate - PS polysulfide - TPP thiamin pyrophosphate - So elemental sulfur - VOR isovalerate ferredoxin oxidoreductase  相似文献   

13.
The primary structure of the glyceraldehyde-3-phosphate dehydrogenase from the archaebacteria shows striking deviation from the known sequences of eubacterial and eukaryotic sequences, despite unequivocal homologies in functionally important regions. Thus, the structural similarity between the eubacterial and eukaryotic enzymes is significantly higher than that between the archaebacterial enzymes and the eubacterial and eukaryotic enzymes. This preferred similarity of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase structures does not correspond to the phylogenetic distances among the three urkingdoms as deduced from comparisons of ribosomal ribonucleic acid sequences. Indications will be presented that the closer relationship of the eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase resulted from a gene transfer from eubacteria to eukaryotes after the segregation of the three urkingdoms.  相似文献   

14.
Summary The sequence of the small-subunit rRNA from the thermoacidophilic archaebacteriumSulfolobus solfataricus has been determined and compared with its counterparts from halophilic and methanogenic archaebacteria, eukaryotes, and eubacteria. TheS. solfataricus sequence is specifically related to those of the other archaebacteria, to the exclusion of the eukaryotic and eubacterial sequences, when examined either by evolutionary distance matrix analyses or by the criterion of minimum change (maximum parsimony). The archaebacterial 16S rRNA sequences all conform to a common secondary structure, with theS. solfataricus structure containing a higher proportion of canonical base pairs and fewer helical irregularities than the rRNAs from the mesophilic archaebacteria.S. solfataricus is unusual in that its 16S rRNA-23S rRNA intergenic spacer lacks a tRNA gene.  相似文献   

15.
The radical intermediate of pyruvate:ferredoxin oxidoreductase (PFOR) from Moorella thermoacetica was characterized using electron paramagnetic resonance (EPR) spectroscopy at X-band and D-band microwave frequencies. EPR spectra, obtained with various combinations of isotopically labeled substrate (pyruvate) and coenzyme (thiamine pyrophosphate (TPP)), were analyzed by spectral simulations. Parameters obtained from the simulations were compared with those predicted from electronic structure calculations on various radical structures. The g-values and 14N/15N-hyperfine splittings obtained from the spectra are consistent with a planar, hydroxyethylidene-thiamine pyrophosphate (HE-TPP) pi-radical, in which spin is delocalized onto the thiazolium sulfur and nitrogen atoms. The 1H-hyperfine splittings from the methyl group of pyruvate and the 13C-hyperfine splittings from C2 of both pyruvate and TPP are consistent with a model in which the pyruvate-derived oxygen atom of the HE-TPP radical forms a hydrogen bond. The hyperfine splitting constants and g-values are not compatible with those predicted for a nonplanar, sigma/n-type cation radical.  相似文献   

16.
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.  相似文献   

17.
Archaeoglobus fulgidus is a hyperthermophilic sulfate-reducing archaeon. In this communication we describe the purification and properties of pyruvate: ferredoxin oxidoreductase from this organism. The catabolic enzyme was purified 250-fold to apparent homogeneity with a yield of 16%. The native enzyme had an apparent molecular mass of 120 kDa and was composed of four different subunits of apparent molecular masses of 45, 33, 25, and 13 kDa, indicating and structure. Per mol, the enzyme contained 0.8 mol thiamine pyrophosphate, 9 mol non-heme iron, and 8 mol acid-labile sulfur. FAD, FMN, lipoic acid, and copper were not found. The purified enzyme showed an apparent K m for coenzyme A of 0.02 mM, for pyruvate of 0.3 mM, and for clostridial ferredoxin of 0.01 mM, an apparent V max of 64 U/mg (at 65°C) with a pH optimum near 7.5 and an Arrhenius activation energy of 75 kJ/mol (between 30 and 70°C). The temperature optimum was above 90°C. At 90°C, the enzyme lost 50% activity within 60 min in the presence of 2 M KCl. The enzyme did not catalyze the oxidation of 2-oxoglutarate, indolepyruvate, phenylpyruvate, glyoxylate, and hydroxypyruvate. The N-terminal amino acid sequences of the four subunits were determined. The sequence of the -subunit had similarities to the N-terminal amino acid sequence of the -subunit of the heterotetrameric pyruvate: ferredoxin oxidoreductase from Pyrococcus furiosus and from Thermotoga maritima, and unexpectedly, to the N-terminal amino acid sequence of the homodimeric pyruvate: ferredoxin oxidoreductase from proteobacteria and from cyanobacteria. No sequence similarities were found, however, between the -subunits of the enzyme from A. fulgidus and the heterodimeric pyruvate: ferredoxin oxidoreductase from Halobacterium halobium.Abbreviations CoASH Coenzyme A - F 420 Coenzyme F420  相似文献   

18.
The 70-kDa heat-shock protein (HSP70) constitutes the most conserved protein present in all organisms that is known to date. Based on global alignment of HSP70 sequences from organisms representing all three domains, numerous sequence signatures that are specific for prokaryotic and eukaryotic homologs have been identified. HSP70s from the two archaebacterial species examined (viz., Halobacterium marismortui and Methanosarcina mazei) have been found to contain all eubacterial but no eukaryotic signature sequences. Based on several novel features of the HSP70 family of proteins (viz., presence of tandem repeats of a 9-amino-acid [a.a.] polypeptide sequence and structural similarity between the first and second quadrants of HSP70, homology of the N-terminal half of HSP70 to the bacterial MreB protein, presence of a conserved insert of 23–27 a.a. in all HSP70s except those from archaebacteria and gram-positive eubacteria) a model for the evolution of HSP70 gene from an early stage is proposed. The HSP70 homologs from archaebacteria and gram-positive bacteria lacking the insert in the N-terminal quadrants are indicated to be the ancestral form of the protein. Detailed phylogenetic analyses of HSP70 sequence data (viz., by bootstrap analyses, maximum parsimony, and maximum likelihood methods) provide evidence that archaebacteria are not monophyletic and show a close evolutionary linkage with the gram-positive eubacteria. These results do not support the traditional archaebacterial tree, where a close relationship between archaebacterial and eukaryotic homologs is observed. To explain the phylogenies based on HSP70 and other gene sequences, a model for the origin of eukaryotic cells involving fusion between archaebacteria and gram-negative eubacteria is proposed. Correspondence to: R. S. Gupta  相似文献   

19.
We analyzed the metaproteome of the bacterial community resident in the hindgut paunch of the wood-feeding ‘higher'' termite (Nasutitermes) and identified 886 proteins, 197 of which have known enzymatic function. Using these enzymes, we reconstructed complete metabolic pathways revealing carbohydrate transport and metabolism, nitrogen fixation and assimilation, energy production, amino-acid synthesis and significant pyruvate ferredoxin/flavodoxin oxidoreductase protein redundancy. Our results suggest that the activity associated with these enzymes may have more of a role in the symbiotic relationship between the hindgut microbial community and its termite host than activities related to cellulose degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号