首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.1 to 4 microg/ml. For some neutralizing HMAbs, HCVcc neutralization displayed a linear correlation with an antibody concentration between the IC50 and the IC90 while others showed a nonlinear correlation. The differences between IC50/IC90 ratios and earlier findings that neutralizing HMAbs block E2 interaction with CD81 suggest that these antibodies block different facets of virus-receptor interaction. Collectively, these findings support an immunogenic model of HCV E2 having three immunogenic domains with distinct structures and functions and provide added support for the idea that CD81 is required for virus entry.  相似文献   

2.

Background

D-type simian retrovirus-2 (SRV-2) causes an AIDS-like immune deficiency syndrome (SAIDS) in various macaque species. SAIDS is often accompanied by retroperitoneal fibromatosis (RF), an aggressive fibroproliferative disorder reminiscent of Kaposi's sarcoma in patients with HIV-induced AIDS. In order to determine the association of SRV-2 subtypes with SAIDS-RF, and study the evolution and transmission of SRV-2 in captive macaque populations, we have molecularly characterized the env gene of a number of SRV-2 isolates from different macaque species with and without RF.

Results

We sequenced the env gene from eighteen SRV-2 isolates and performed sequence comparisons and phylogenetic analyses. Our studies revealed the presence of six distinct subtypes of SRV-2, three of which were associated with SAIDS-RF cases. We found no association between SRV-2 subtypes and a particular macaque species. Little sequence variation was detected in SRV-2 isolates from the same individual, even after many years of infection, or from macaques housed together or related by descent from a common infected parent. Seventy-two amino acid changes were identified, most occurring in the larger gp70 surface protein subunit. In contrast to the lentiviruses, none of the amino acid variations involved potential N-linked glycosylation sites. Structural analysis of a domain within the gp22/gp20 transmembrane subunit that was 100% conserved between SRV-2 subtypes, revealed strong similarities to a disulfide-bonded loop that is crucial for virus-cell fusion and is found in retroviruses and filoviruses.

Conclusion

Our study suggests that separate introductions of at least six parental SRV-2 subtypes into the captive macaque populations in the U.S. have occurred with subsequent horizontal transfer between macaque species and primate centers. No specific association of a single SRV-2 subtype with SAIDS-RF was seen. The minimal genetic variability of the env gene within a subtype over time suggests that a strong degree of adaptation to its primate host has occurred during evolution of the virus.  相似文献   

3.
We have studied the distribution of viral sequences from the 5' noncoding region and from a fragment of the E2/NS2 region of the hepatitis C virus (HCV) genome in samples obtained before and after liver transplantation in two patients with HCV cirrhosis. The population of viral sequences in both regions were established by sequencing cloned PCR products. In both cases, the complexity of the viral quasispecies decreased after transplantation, although the consensus nucleotide and amino acid sequences remained unchanged. It is suggested that both positive and negative selection and random sampling events contribute substantially in shaping the genetic composition of HCV quasispecies and that recurrence of HCV infection may occur under equilibrium conditions.  相似文献   

4.
Intrahepatic virus-specific CD8(+) T cells are thought to be important for the control of hepatitis C virus (HCV) infection, yet the precise kinetics for the expansion of epitope-specific T cells over the course of infection are difficult to determine with currently available methods. We used a real-time PCR assay to measure the frequency of clonotypic HCV-specific CD8(+) T cells in peripheral blood and snap-frozen liver biopsy specimens of two chimpanzees (Pan troglodytes) with previously resolved HCV infection who were rechallenged with HCV. In response to rechallenge, the magnitude of each clonotypic response was 10-fold higher in the liver than in the blood, and the peak clonotype frequency was concurrent with the peak viral load. The higher frequency of HCV-specific clonotypes in the liver than in peripheral blood was maintained for at least 3 months after the clearance of viremia. After antibody-mediated CD8(+) T-cell depletion and another viral challenge, the rebound of these clonotypes was seen prior to an appreciable reconstitution of CD8(+) T-cell values and, again, at higher frequencies in the liver than in peripheral blood. These data demonstrate the importance of intrahepatic virus-specific CD8(+) T cells for the clearance of infection and the rapid kinetics of expansion after virus challenge.  相似文献   

5.
HIV/HCV coinfected individuals under highly active antiretroviral therapy (HAART) represent an interesting model for the investigation of the role played by the immune system in driving the evolution of the HCV quasispecies. We prospectively studied the intra-host evolution of the HCV heterogeneity in 8 coinfected subjects, selected from a cohort of 32 patients initiating HAART: 5 immunological responders (group A) and 3 immunological non-responders (group B), and in two HCV singly infected controls not assuming drugs (group C). For all these subjects at least two serial samples obtained at the first observation (before HAART) and more than 1 year later, underwent clonal sequence analysis of partial E1/E2 sequences, encompassing the whole HVR1. Evolutionary rates, dated phylogenies and population dynamics were co-estimated by using a Bayesian Markov Chain Monte Carlo approach, and site specific selection pressures were estimated by maximum likelihood-based methods. The intra-host evolutionary rates of HCV quasispecies was 10 times higher in subjects treated with HAART than in controls without immunodeficiency (1.9 and 2.3 × 10(-3) sub/site/month in group A and B and 0.29 × 10(-3) sub/site/month in group C individuals). The within-host Bayesian Skyline plot analysis showed an exponential growth of the quasispecies populations in immunological responders, coinciding with a peak in CD4 cell counts. On the contrary, quasispecies population remained constant in group B and in group C controls. A significant positive selection pressure was detected in a half of the patients under HAART and in none of the group C controls. Several sites under significant positive selection were described, mainly included in the HVR1. Our data indicate that different forces, in addition to the selection pressure, drive an exceptionally fast evolution of HCV during HAART immune restoration. We hypothesize that an important role is played by the enlargement of the viral replicative space.  相似文献   

6.
Acute cellular rejection (ACR) and hepatitis C virus (HCV) recurrence (HCVrec) are common complications after liver transplantation (LT) in HCV patients, who share common clinical and histological features, making a differential diagnosis difficult. Fifty-three liver allograft samples from unique HCV LT recipients were studied using microarrays, including a training set (n = 32) and a validation set (n = 19). Two no-HCV-ACR samples from LT recipients were also included. Probe set intensity values were obtained using the robust multiarray average method (RMA) method. Analysis of variance identified statistically differentially expressed genes (P ≤ 0.005). The limma package was used to fit the mixed-effects models using a restricted maximum likelihood procedure. The last absolute shrinkage and selection operator (LASSO) model was fit with HCVrec versus ACR as the dependent variable predicted. N-fold cross-validation was performed to provide an unbiased estimate of generalization error. A total of 179 probe sets were differentially expressed among groups, with 71 exclusive genes between HCVrec and HCV-ACR. No differences were found within ACR group (HCV-ACR vs. no-HCV-ACR). Supervised clustering analysis displayed two clearly independent groups, and no-HCV-ACR clustered within HCV-ACR. HCVrec-related genes were associated with a cytotoxic T-cell profile, and HCV-ACR-related genes were associated with the inflammatory response. The best-fitting LASSO model classifier accuracy, including 15 genes, has an accuracy of 100% in the training set. N-fold cross-validation accuracy was 78.1%, and sensitivity, specificity and positive and negative predictive values were 50.0%, 90.9%, 71.4% and 80.0%, respectively. Arginase type II (ARG2), ethylmalonic encephalopathy 1 (ETHE1), transmembrane protein 176A (TMEM176A) and TMEM176B genes were significantly confirmed in the validation set. A molecular signature capable of distinguishing HCVrec and ACR in HCV LT recipients was identified and validated.  相似文献   

7.
8.
A molecular study was conducted to investigate the prevalence of Hepatitis C virus genotypes in HCV infected population of Balochistan. Forty HCV seropositive samples belonging to seven different locations of Balochistan were collected from different health care centres. Qualitative analysis of these samples using PCR resulted in 28 positive samples. The PCR positive samples were subjected to genotyping using the method described by Ohno et al (J Clin Microbiol 35:201–202, 1997) with minor modifications. Genotyping of 28 samples revealed three different genotypes including 3a, 3b and 1a. The most prevalent genotype was 3a with rate of 50% followed by genotype 3b and 1a, respectively. Nine samples remained untyped, suggesting the need of further investigation of genotypes in this region. It has been proposed that sequencing of these samples may be helpful to unreveal these genotypes and further epidemiology of HCV genotypes. Further more, extensive and large scale studies are needed to understand the epidemiology of HCV genotypes, as no such study has been carried in this province.  相似文献   

9.
10.
11.
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.  相似文献   

12.
The prevalence of 1) hepatitis C virus (HCV), an agent likely to be responsible for parenterally transmitted hepatitis non-A, non-B, 2) hepatitis B virus (HBV) and 3) human immunodeficiency virus (HIV) infection was studied in 211 patients with clotting disorders (78% of the patients had residual factor activities of less than or equal to 2%). Of these patients 71% were positive for HBV markers and 44% for HIV markers. Using a new ELISA technique, 80% were anti-HCV-positive. The prevalence of anti-HCV was greater in patients with more severe clotting disorders and was related to the total amount of replacement therapy received; the prevalence was less in older patients. Seroconversion after a single exposure to dry heat-treated factor concentrates was documented in 3 patients 3-4 months after exposure.  相似文献   

13.
When chronic hepatitis C virus (HCV) infections are complicated by acquisition of human immunodeficiency virus (HIV), liver disease appears to accelerate and serum levels of HCV RNA may rise. We hypothesized that HIV might affect the HCV quasispecies by decreasing both complexity (if HIV-induced immunosuppression lessens pressure for selecting HCV substitutions) and the ratio of nonsynonymous (d(N)) to synonymous (d(S)) substitutions, because d(N) may be lower (if there is less selective pressure). To test this hypothesis, we studied the evolution of HCV sequences in 10 persons with chronic HCV infection who seroconverted to HIV and, over the next 3 years, had slow or rapid progression of HIV-associated disease. From each subject, four serum specimens were selected with reference to HIV seroconversion: (i) more than 2 years prior, (ii) less than 2 years prior, (iii) less than 2 years after, and (iv) more than 2 years after. The HCV quasispecies in these specimens was characterized by generating clones containing 1 kb of cDNA that spanned the E1 gene and the E2 hypervariable region 1 (HVR1), followed by analysis of clonal frequencies (via electrophoretic migration) and nucleotide sequences. We examined 1,320 cDNA clones (33 per time point) and 287 sequences (median of 7 per time point). We observed a trend toward lower d(N)/d(S) after HIV seroconversion in 7 of 10 subjects and lower d(N)/d(S) in those with rapid HIV disease progression. However, the magnitude of these differences was small. These results are consistent with the hypothesis that HIV infection alters the HCV quasispecies, but the number of subjects and observation time may be too low to characterize the full effect.  相似文献   

14.
In this work, we have shown that hepatitis C virus (HCV) and hepatitis B virus (HBV) can coexist in the same hepatocyte using double fluorescent in situ hybridization in liver biopsy samples from patients with chronic HCV infection with occult HBV infection. Digital image analysis of hybridization signals showed that the HBV DNA levels in coinfected hepatocytes were lower than those in cells infected only with HBV. This finding supports the hypothesis of inhibition of HBV replication by HCV. Furthermore, HCV RNA levels were lower in coinfected cells than in cells infected only with HCV, suggesting that HBV may also inhibit HCV replication.  相似文献   

15.
To evaluate the possibility that distinct viral quasispecies play a role in the pathogenesis of progressive hepatitis C virus (HCV) infection, we performed a detailed evaluation of HCV quasispecies before and after liver transplantation in five patients infected with HCV genotype 1, three of whom developed severe recurrent hepatitis C and two of whom developed asymptomatic posttransplant infections with high-titered viremia. HCV quasispecies were characterized by using a combination of nucleotide sequencing plus heteroduplex tracking assay of the second envelope gene hypervariable region (HVR). An average of 30 HVR clones were analyzed per specimen; an average of five specimens were analyzed per patient over a 6- to 24-month study period. The complexity of HCV quasispecies in pretransplant serum varied, ranging from one to nine genetically distinct variants for the five patients. However, in all five cases, relatively homogenous quasispecies variants emerged after liver transplantation. In the three patients who developed recurrent hepatitis, quasispecies major variants present in pretransplant serum were efficiently propagated immediately after liver transplantation and were propagated throughout the course of acute and chronic hepatitis. In contrast, in the two asymptomatic cases, we observed rapid depletion of pretransplant quasispecies major variants from posttransplant serum, followed by emergence of new quasispecies variants by posttransplant day 30. Genetic analysis suggested that in these cases, the new quasispecies variants were derived from minor variants present at relatively low clonal frequency (less than 5% of HVR clones) within the pretransplant quasispecies populations. These data demonstrate that quasispecies tracking patterns are associated with the rapidity and severity of HCV-associated liver disease after liver transplantation. Further characterization of HCV quasispecies in animal model systems is warranted.  相似文献   

16.
The host–virus interactions leading to cell infection with hepatitis C virus (HCV) are not fully understood. The tetraspanin CD-81 and human scavenger receptor SR-BI/Cla1 are major receptors mediating virus cell entry. However, HCV in patients' sera is associated with lipoproteins and infectious potential of the virus depends on lipoproteins associated to virus particles. We show here that lipoprotein lipase (LPL), targeting triglyceride-rich lipoproteins (TRL) to the liver, mediates binding and internalization of HCV to different types of cells, acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate proteoglycans (HSPG). The dimeric structure and catalytic activity of LPL are required for LPL-mediated HCV uptake to cells. Unexpectedly, exogenous LPL significantly inhibits HCVcc infection in vitro . This effect is prevented by anti-LPL antibodies and by tetrahydrolipstatin (THL) a specific inhibitor of LPL enzymatic activity. In addition, we show that antibodies directed to apolipoprotein B (ApoB)-containing lipoproteins efficiently inhibits HCVcc infection. Our findings suggest that LPL mediates HCV cell entry by a mechanism similar to hepatic clearance of TRL from the circulation, promoting a non-productive virus uptake. These data provide new insight into mechanisms of HCV cell entry and suggest that LPL could modulate HCV infectivity in vivo .  相似文献   

17.
Sequencing of multiple recombinant clones generated from polymerase chain reaction-amplified products demonstrated that the degree of heterogeneity of two well-conserved regions of the hepatitis C virus (HCV) genome within individual plasma samples from a single patient was consistent with a quasispecies structure of HCV genomic RNA. About half of circulating RNA molecules were identical, while the remaining consisted of a spectrum of mutants differing from each other in one to four nucleotides. Mutant sequence diversity ranged from silent mutations to appearance of in-frame stop codons and included both conservative and nonconservative amino acid substitutions. From the relative proportion of essentially defective sequences, we estimated that most circulating particles should contain defective genomes. These observations might have important implications in the physiopathology of HCV infection and underline the need for a population-based approach when one is analyzing HCV genomes.  相似文献   

18.
The development of a reproducible model system for the study of hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large-scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full-length HCV replicon. We detected >4,200 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry. Consistent with the literature, a comparison of HCV replicon-positive and -negative Huh-7.5 cells identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where a total of >1,500 proteins were detected from only 2 mug of liver biopsy protein digest using the Huh-7.5 protein database and the accurate mass and time tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting in the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.  相似文献   

19.
20.
HCVisthemajorcauseofposttransfusionnonA,nonBhepatitis[1].About50%oftheinfectionswilldevelopintochronichepatitisandamongthemabout20%willresultinlivercirrhosisandhepatocellularcarcinoma[2].BecausethetiterofHCVparticleinpatient’sbloodisextremelylow,andthereisno…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号