共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Mauffret O El Amri C Santamaria F Tevanian G Rayner B Fermandjian S 《Nucleic acids research》2000,28(22):4403-4409
Natural and artificial oligonucleotides are capable of assuming many different conformations and functions. Here we present results of an NMR restrained molecular modelling study on the conformational preferences of the modified decanucleotide d((m)C1G2(m)C3G4C5(L)G6(L)(m)C7G8(m)C9G10) .d((m)C11G12(m)C13G14C15(L)G (L)16(m)C17-G18(m)C19G20 ) which contains L deoxynucleotides in its centre. This chimeric DNA was expected to form a right-left-right-handed B-type double-helix (BB*B) at low salt concentration. Actually, it matured into a fully right-handed double helix with its central C(L)pG(L) core forming a right-handed Z-DNA helix embedded in a B-DNA matrix (BZ*B). The interplay between base-base and base-sugar stackings within the core and its immediately adjacent residues was found to be critical in ensuring the stabilisation of the right-handed helix. The structure could serve as a model for the design of antisense oligonucleotides resistant to nucleases and capable of hybridising to natural DNAs and RNAs. 相似文献
11.
The thermodynamic parameters for the double-strand formation of the molecules rCAmG + rCUnG, m,n = 5–7, and dCAmG + dCTnG, m,n = 5,6, were measured from optical melting curves. Normal helices are formed when m = n. The deoxyoligomers are more stable than the ribo-oligomers, due to a more favorable enthalpy. Double helices with mismatched bases can be formed by mixing oligomers with m ≠ n. Such helices may form several possible structures. A structure with a dangling base is favored over a structure with a bulged base. The destabilization of the double strands by the formation of a bulged base was determined to be greater than 1.6 kcal/mol at 10°C. The extent of aggregation in the oligomer double strand rCA7G·rCU7G was determined using ultracentrifugation equilibrium. The possible effects of aggregation on the determination of the thermodynamic parameters for double-strand formation are discussed. 相似文献
12.
We have used internal coordinate molecular mechanics calculations to study how the DNA double helix deforms upon stretching. Results obtained for polymeric DNA under helical symmetry constraints suggest that two distinct forms, an unwound ribbon and a narrow fibre, can be formed as a function of which ends of the duplex are pulled. Similar results are also obtained with DNA oligomers. These experiments lead to force curves which exhibit a plateau as the conformational transition occurs. This behaviour is confirmed by applying an increasing force to DNA and observing a sudden length increase at a critical force value. It is finally shown some DNA binding proteins can also stretch DNA locally, to conformations related to those created by nanomanipulation.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
13.
Yeramian E 《Gene》2000,255(2):151-168
A gene identification procedure is formulated, based on large-scale structural analyses of genomic sequences. The structural property is the physical - thermal - stability of the DNA double-helix, as described by the classical helix-coil model. The analyses are detailed for the Plasmodium falciparum genome, which represents one of the most difficult cases for the gene identification problem (notably because of the extreme AT-richness of the genome). In this genome, the coding domains (either uninterrupted genes or exons in split genes) are accurately identified as regions of high thermal stability. The conclusion is based on the study of the available cloned genes, of which 17 examples are described in detail. These examples demonstrate that the physical criterion is valid for the detection of coding regions whose lengths extend from a few base pairs up to several thousand base pairs. Accordingly, the structural analyses can provide a powerful and convenient tool for the identification of complex genes in the P. falciparum genome. The limits of such a scheme are discussed. The gene identification procedure is applied to the completely sequenced chromosomes (2 and 3), and the results are compared with the database annotations. The structural analyses suggest more or less extensive revision to the annotations, and also allow new putative genes to be identified in the chromosome sequences. Several examples of such new genes are described in detail. 相似文献
14.
Temperature dependence of the dynamic light scattering of linear phi 29 DNA: implications for spontaneous opening of the double-helix 总被引:2,自引:0,他引:2
The apparent diffusion coefficient Dapp(K) of a single sample of linear ?29 DNA (Mr = 11.5 × 106) has been measured as a function of K2 from 0.21 × 1010 to 20 × 1010 cm?2 at a variety of temperatures from ?0.5 to +70°C. Dapp(K) scales closely as T/η at every value of K2. All of these data are simulated by a particular Rouse-Zimm model comprised of a constant number of subchains with constant rms subchain extension b = 1057 Å and an apparent subchain diffusion coefficient Dplat that scales at T/η from ?0.5 to +70°C. It is inferred from these results that any temperature dependence of the flexural and torsional rigidities of DNA must be rather weak. A less firm inference is that these rigidities actually increase slightly with temperature, possibly in proportion to T, which is weak T dependence in this context. These findings eliminate the possibility that spontaneous transient opening of the DNA structure has any significant effect on the flexural and torsional rigidities of the DNA filament. A review of the most pertinent available data from other experiments concerning spontaneous transient opening of the DNA is presented. The formaldehyde kinetics data do not unequivocally implicate an open base-pair intermediate and provide only an upper limit to the fraction of open base pairs. An alternative nonopening model with a protonated doorway state is proposed to accommodate the hydrogen-exchange data. It is concluded that there is presently no incontrovertible evidence for a fraction of unstacked open base pairs greater than about 10?4. 相似文献
15.
16.
Adaptation of the base-paired double-helix molecular architecture to extreme pressure 总被引:1,自引:0,他引:1
下载免费PDF全文

Girard E Prangé T Dhaussy AC Migianu-Griffoni E Lecouvey M Chervin JC Mezouar M Kahn R Fourme R 《Nucleic acids research》2007,35(14):4800-4808
The behaviour of the d(GGTATACC) oligonucleotide has been investigated by X-ray crystallography at 295K in the range from ambient pressure to 2GPa (~20000atm). Four 3D-structures of the A-DNA form (at ambient pressure, 0.55, 1.09 and 1.39GPa) were refined at 1.60 or 1.65Å resolution. In addition to the diffraction pattern of the A-form, the broad meridional streaks previously explained by occluded B-DNA octamers within the channels of the crystalline A-form matrix were observed up to at least 2GPa. This work highlights an important property of nucleic acids, their capability to withstand very high pressures, while keeping in such conditions a nearly invariant geometry of base pairs that store and carry genetic information. The double-helix base-paired architecture behaves as a molecular spring, which makes it especially adapted to very harsh conditions. These features may have contributed to the emergence of a RNA World at prebiotic stage. 相似文献
17.
E Liberman 《Bio Systems》1979,11(4):323-327
18.
19.