首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:对三套荧光显微成像系统在国产新型光敏剂HMME亚细胞定位研究中的应用特点及适用范围进行了比较与评价。方法:分别应用LSCM、CCD、ICCD荧光显微成像系统,选择特异性细胞器荧光探针Rhodamine-123、DIOC6(3)标记细胞内线粒体和内质网。采用细胞器-细胞荧光强度比值法,对HMME进行单细胞内分布的定性与定量研究。结果:LSCM和CCD成像系统能采集到浓度达到160μg/ml时的HMME的荧光图像,获得荧光探针图像信息显示所标记的细胞内线粒体和内质网平均荧光强度比值(J1/J2值)都明显高于细胞内J1/J2值。而ICCD成像系统只需HMME浓度为5μg/ml,荧光图像特点都呈胞浆中荧光强度较高且分布不均,细胞核区荧光较弱的中空现象。ICCD系统对细胞器探针荧光图像在空间分辨上不理想。结论:LSCM与CCD成像系统限于其探测灵敏度,对于弱荧光性光敏剂,适用于其高孵育浓度条件下的亚细胞定位研究。二者获得的结果相一致:孵育24h,HMME在鼠肺内皮细胞线粒体和内质网有分布而几乎不进入细胞核。ICCD成像系统可不受孵育浓度条件的限制,实现光敏剂极微弱荧光的有效探测,但空间分辨率较低。  相似文献   

2.
Peroxisomes are membrane‐bound organelles found in almost all eukaryotic cells. They perform specialized biochemical functions that vary with organism, tissue or cell type. Mutations in human genes required for the assembly of peroxisomes result in a spectrum of diseases called the peroxisome biogenesis disorders. A previous sequence‐based comparison of the predicted proteome of Drosophila melanogaster (the fruit fly) to human proteins identified 82 potential homologues of proteins involved in peroxisomal biogenesis, homeostasis or metabolism. However, the subcellular localization of these proteins relative to the peroxisome was not determined. Accordingly, we tested systematically the localization and selected functions of epitope‐tagged proteins in Drosophila Schneider 2 cells to determine the subcellular localization of 82 potential Drosophila peroxisomal protein homologues. Excluding the Pex proteins, 34 proteins localized primarily to the peroxisome, 8 showed dual localization to the peroxisome and other structures, and 26 localized exclusively to organelles other than the peroxisome. Drosophila is a well‐developed laboratory animal often used for discovery of gene pathways, including those linked to human disease. Our work establishes a basic understanding of peroxisome protein localization in Drosophila. This will facilitate use of Drosophila as a genetically tractable, multicellular model system for studying key aspects of human peroxisome disease.   相似文献   

3.
The plant growth substance jasmonic acid and its methyl ester (JA-Me) induce a set of proteins (jasmonate-induced proteins, JIPs) when applied to leaf segments of barley (Hordeum vulgare L. cv. Salome). Most of these JIPs could be localized within different cell compartments by using a combination of biochemical and histochemical methods. Isolation and purification of various cell organelles of barley mesophyll cells, the separation of their proteins by one-dimensional polyacrylamide gel electrophoresis and the identification of the major abundant JIPs by Western blot analysis, as well as the immuno-gold labelling of JIPs in ultrathin sections were performed to localize JIPs intracellularly. JIP-23 was found to be in vacuoles, peroxisomes, and in the granular parts of the nucleus as well as within the cytoplasm; JIP-37 was detected in vacuoles and in the nucleoplasm; JIP-66 is a cytosolic protein. Some less abundant JIPs were also localized within different cell compartments: JIP-100 was found within the stromal fraction of chloroplasts; JIP-70 is present in the peroxisome and the nucleus; JIP-50 and JIP-6 accumulate in vacuoles. The location of JIP-66 and JIP-6 confirms their possible physiological role deduced from molecular analysis of their cDNA.  相似文献   

4.
The yeasts Saccharomyces cerevisiae and Pichia pastoris and the bacteria Micrococcus luteus, Bacillus subtilis, and Anaerobacter polyendosporus have been treated with the chaotropic agents guanidine hydrochloride and guanidine thiocyanate and certain detergents and studied using fluorescence microscopy. Studies with the use of fluorochromes that can selectively stain nucleic acids (diamidino-2-phenylindole (DAPI), propidium iodide, and acridine orange) show that treatment of the bacterial and yeast cells at 37°C for 3–5 h induces a release of DNA from the cytoplasm and its accumulation in the cellular zone, known as ectoplasm, located between the cell wall and the remainder of the cytoplasm (called endoplasm) in the form of one or several large granules. After treating the cells with the chaotropic agents at 100°C for 5–6 min, the DNA is diffusively distributed over the ectoplasm. The fluorochromes used do not allow the detection of RNA. These findings are in agreement with previous data obtained from electron microscopic study of thin cell sections. After 33 PCR cycles, a considerable portion of DNA leaves the cells; as a result, they show a low level of diffusive fluorescence when stained with DAPI. When endospores of B. subtilis are treated with the chaotropic agents, they become highly permeable to the fluorochromes. Fluorescence microscopic study of such endospores shows that they contain DNA in the central part of their cores.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 505–510.Original Russian Text Copyright © 2005 by Duda, Danilevich, Akimov, Suzina, Dmitriev, Shorokhova.  相似文献   

5.
The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.  相似文献   

6.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

7.
Protein-protein interactions (PPIs) are key molecular events to biology. However, it remains a challenge to visualize PPIs with sufficient resolution and sensitivity in cells because the resolution of conventional light microscopy is diffraction-limited to ~250 nm. By combining bimolecular fluorescence complementation (BiFC) with photoactivated localization microscopy (PALM), PPIs can be visualized in cells with single molecule sensitivity and nanometer spatial resolution. BiFC is a commonly used technique for visualizing PPIs with fluorescence contrast, which involves splitting of a fluorescent protein into two non-fluorescent fragments. PALM is a recent superresolution microscopy technique for imaging biological samples at the nanometer and single molecule scales, which uses phototransformable fluorescent probes such as photoactivatable fluorescent proteins (PA-FPs). BiFC-PALM was demonstrated by splitting PAmCherry1, a PA-FP compatible with PALM, for its monomeric nature, good single molecule brightness, high contrast ratio, and utility for stoichiometry measurements. When split between amino acids 159 and 160, PAmCherry1 can be made into a BiFC probe that reconstitutes efficiently at 37 °C with high specificity to PPIs and low non-specific reconstitution. Ras-Raf interaction is used as an example to show how BiFC-PALM helps to probe interactions at the nanometer scale and with single molecule resolution. Their diffusion can also be tracked in live cells using single molecule tracking (smt-) PALM. In this protocol, factors to consider when designing the fusion proteins for BiFC-PALM are discussed, sample preparation, image acquisition, and data analysis steps are explained, and a few exemplary results are showcased. Providing high spatial resolution, specificity, and sensitivity, BiFC-PALM is a useful tool for studying PPIs in intact biological samples.  相似文献   

8.
Intensity, spectral characteristics and localization of the UV-laser (337 nm) induced blue-green and red fluorescence emission of green, etiolated and white primary leaves of wheat seedlings were studied in a combined fluorospectral and fluoromicroscopic investigation. The blue-green fluorescence of the green leaf was characterized by a maximum near 450 nm (blue region) and a shoulder near 530 nm (green region), whereas the red chlorophyll fluorescence exhibited maxima in the near-red (F690) and far-red (F735). The etiolated leaf with some carotenoids and traces of chlorophyll a, in turn, showed a higher intensity of the blue-green fluorescence with a shoulder in the green region and a strong red fluorescence peak near 684 to 690 nm, the far-red chlorophyll fluorescence maximum (F735) was, however, absent. The norfluorazone-treated white leaf, free of chlorophylls and carotenoids, only exhibited blue-green fluorescence of a very high intensity. In green and etiolated leaves the blue-green fluorescence primarily derived from the cell walls of the epidermis and the red fluorescence from the chlorophyll a of the mesophyll cells. In white leaves the blue-green fluorescence emanated from all cell walls of epidermis, mesophyll and leaf vein bundles. The shape and intensity of the blue-green and red fluorescence emission is determined by the reabsorption properties of chlorophylls and carotenoids in the mesophyll, thus giving rise to quite different values of the various fluorescence ratios F450/F690, F450/F530, F450/F735 and F690/F735 in green and etiolated leaves.  相似文献   

9.
目的:探讨应用基于ICCD的超高灵敏度荧光显微成像系统研究光敏剂细胞内分布的可行性。方法:传代培养内皮细胞、食管癌细胞和肺癌细胞,将不同浓度血卟啉单甲醚(HMME)与细胞共同孵育不同时间。采用荧光显微镜及ICCD组成的荧光显微成像系统采集不同浓度及不同孵育时间条件下HMME的荧光图像,并采用计算机图像处理技术进行图像增强、滤波后计算其细胞浆与细胞核的平均荧光强度比值。同时应用激光共聚焦显微镜图像采集进行对比。结果:HMME浓度为5μg/ml时,荧光显微镜采集到HMME的荧光图像;HMME浓度升高到160μg/ml,激光共聚焦显微镜获得HMME的荧光图像。两组图像的特点都为胞浆中荧光强度较高,细胞核区荧光较弱;细胞浆与细胞核的比值约为2~3:1。结论:荧光显微镜和ICCD采集细胞内光敏剂的荧光图像灵敏度高,方法可靠、实用。HMME较多分布在细胞质中,细胞核吸收较少。  相似文献   

10.
几种超分辨率荧光显微技术的原理和近期进展   总被引:1,自引:0,他引:1  
在生命科学领域,人们常常需要在细胞内精确定位特定的蛋白质以研究其位置与功能的关系.多年来,宽场/共聚焦荧光显微镜的分辨率受限于光的阿贝/瑞利极限,不能分辨出200 nm以下的结构.近年来,随着新的荧光探针和成像理论的出现,研究者开发了多种实现超出普通共聚焦显微镜分辨率的三维超分辨率成像方法.主要介绍这些方法的原理、近期进展和发展趋势.介绍了光源的点扩散函数(point spread function, PSF)的概念和传统分辨率的定义,阐述了提高xy平面分辨率的方法.通过介绍单分子荧光成像技术,引入了单分子成像定位精度的概念,介绍了基于单分子成像的超分辨率显微成像方法,包括光激活定位显微技术(photoactivated localization microscopy, PALM)和随机光学重构显微技术(stochastic optical reconstruction microscopy, STORM).介绍了两大类通过改造光源的点扩散函数来提高成像分辨率的方法,分别是受激发射损耗显微技术(stimulated emission depletion, STED)和饱和结构照明显微技术(saturated structure illumination microscopy, SSIM).比较了不同的z轴提取信息的方法,并阐述了这些方法与xy平面上的超分辨率显微成像技术相结合所得到的各种三维超分辨率显微成像技术的优劣.探讨了目前超分辨率显微成像的发展极限和方向.  相似文献   

11.
The utility of fluorescence microscopy for studying development of fern spores is investigated. Changes in the fluorescence characteristics during the developmental stages of fern sporangia can be attributed to the changes in the chemical composition of the cell wall. Bright blue autofluorescence of the spores indicated the presence of sporopollenin. The sporan-gial walls and the spores autofluoresced yellow under blue light excitation. Fluorescence microscopy is a useful addition to light, scanning, and transmission electron microscopy because living specimens can be studied owing to their fluorescence properties.  相似文献   

12.
A technique was developed for sectioning fresh red spruce foliage (Picea rubens Sarg.) for use in fluorescence microscopy. This allowed rapid examination of mesophyll in 3-5 mm needle sections. Healthy, ozone treated and cold stressed needles were examined to assess the utility of this technique for early detection of damage. Healthy mesophyll cells fluoresced bright red, while injured cells fluoresced yellow-green in ozone treated needles, and yellow-orange in frozen needles. Shifts in fluorescence wavelengths may be useful for early detection of injury to mesophyll before it is evident by standard light or electron microscopy.  相似文献   

13.
双分子荧光互补技术   总被引:4,自引:0,他引:4  
双分子荧光互补(bimolecular fluorescence complementation, BiFC)是近年发展起来的用于体内或体外检测蛋白质相互作用的一项新技术.该技术是将荧光蛋白在合适的位点切开形成不发荧光的2个片段,这2个片段借助融合于其上的目标蛋白的相互作用,彼此靠近,重新形成能具有活性的荧光蛋白.BiFC方法简单直观,既可以检测蛋白之间的相互作用,也可以定位相互作用蛋白质的位点.多色BiFC系统共用或与荧光共振能量转移(FRET)技术联用,还可以检测细胞内多个蛋白质的相互作用.  相似文献   

14.
Fluorescence microscopy of the endomembrane system of living plant cells   总被引:1,自引:1,他引:0  
Abstract The fluorochrome Auramine O has been evaluated as a fluorescent probe for components of the endomembrane system of living plant cells. At 0.001% w/v the compound did not inhibit seedling growth or cytoplasmic streaming but stained the nuclear envelope, endoplasmic reticulum and Golgi apparatus. The three-dimensional, structural interrelationships of these organelles in living tissues could be resolved after minimal tissue preparation. The method is also a valuable control treatment for use in conjunction with electron microscope fixation procedures. It provides a rapid means of examining dynamic changes in the endomembrane system associated with cell development and differentiation and could have application in monitoring the effects of applied physiological or chemical stress.  相似文献   

15.
The diagnostic advantage of fluorescence microscopy (FM) of Papanicolaou-stained cytological specimens obtained by bronchoscopy has been described previously. This study was designed to evaluate the method's diagnostic benefit in cytological preparations of pleural effusions in cases of active pulmonary tuberculosis. In contrast to bronchial material there is no advantage in cytological evaluation of pleural effusions by FM.  相似文献   

16.
双分子荧光互补技术及其在蛋白质相互作用研究中的应用   总被引:1,自引:0,他引:1  
双分子荧光互补(bimolecularfluorescencecomplementation,BiFC)分析技术,是由Hu等在2002年最先报道的一种直观、快速地判断目标蛋白在活细胞中的定位和相互作用的新技术.该技术巧妙地将荧光蛋白分子的两个互补片段分别与目标蛋白融合表达,如果荧光蛋白活性恢复则表明两目标蛋白发生了相互作用.其后发展出的多色荧光互补技术(multicolorBiFC),不仅能同时检测到多种蛋白质复合体的形成,还能够对不同蛋白质间产生相互作用的强弱进行比较.目前,该技术已用于转录因子,G蛋白βγ亚基的二聚体形式,不同蛋白质间产生相互作用强弱的比较以及蛋白质泛素化等方面的研究工作上.  相似文献   

17.
We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.Abbreviations 1PEF one-photon excited fluorescence - 2PEF two-photon excited fluorescence - APD avalanche photo diode - CHO Chinese hamster ovary - DMEM Dulbecco's modified Eagle's medium - EGFP enhanced green fluorescent protein - EW evanescent wave - FCS fetal calf serum - GPI glycosylphosphatidylinositol - TIR total internal reflectionThis paper is dedicated to the memory of Prof. Horst Harreis (1940–2002)  相似文献   

18.
19.
双光子激发荧光各向异性度的成像   总被引:2,自引:0,他引:2  
荧光各向异性度 (fluorescence anisotropy) 测量可以获得荧光分子的转动速度信息,进而了解分子质量、结构、以及与周边环境的相互作用情况 . 围绕一台双光子激发扫描荧光成像系统,通过改变外光路和图像记录与处理程序,从而实现了双光子激发荧光各向异性度成像,并针对一些典型样品和体系,展示了该方法的应用 . 实验中观察了 FITC 荧光分子、 FITC 结合的 CD44 抗体分子及与肿瘤细胞表面受体结合的 FITC-CD44 抗体分子 . 测量结果表明,不同分子质量、不同微观环境状态下的荧光分子,其各向异性度大小不同,在各向异性度图中能够被明显区分 . 荧光各向异性度成像能够定量测量样品微区的各向异性度值,并以二维图像的形式直观表达,是各向异性度测量与成像技术的良好结合 .  相似文献   

20.
The replication of HIV‐1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV‐1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus–cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV‐1–host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV‐1 particle formation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号