共查询到20条相似文献,搜索用时 15 毫秒
1.
Eileen Kim-Choi Christiane Danilo Jeffrey Kelly Ronnie Carroll David Shonnard Irina Rybina 《Luminescence》2006,21(3):135-142
Firefly luciferase covers a wide range of applications. One common usage of the bioluminescence assay is the measurement of intracellular concentration of adenosine triphosphate (ATP) for cell viability. However, inhibition of the enzyme reaction by chemicals in the assay has so far limited the application of luciferase for high production volume (HPV) chemical testing. The objective of this research was to obtain a mutant luciferase with increased stability to inhibition by HPV chemicals, yet retaining specific activity comparable to, or better than, wild-type luciferase. The enzymatic properties of the wild-type luciferase were improved by random mutagenesis and colony-level screening. In this paper, the detailed process of creating mutant luciferases for testing the toxicity of HPV chemicals is described. As a result, two mutant luciferases were created, with different degrees of improved tolerance to inhibition by chloroform and other HPV chemicals. 相似文献
2.
3.
A novel colorimetric fluoride sensor based on a semi‐rigid chromophore controlled by hydrogen bonding 下载免费PDF全文
A novel semi‐rigid latent chromophore E1, containing an amide subunit activated by an adjacent semi‐rigid intramolecular hydrogen‐bonding (IHB) unit, was designed for the detection of fluoride ion by the ‘naked‐eye’ in CH3CN. Comparative studies on structural analogs (E2, E3, and E4) provided significant insight into the structural and functional role of the amide N–H and IHB segment in the selective recognition of fluoride ions. The deprotonation of the amide N–H followed by the enhancement of intramolecular charge transfer (ICT) induced the colorimetric detection of E1 for fluoride ion. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Dirk Aerts Tom Verhaeghe Marjan De Mey Tom Desmet Wim Soetaert 《Engineering in Life Science》2011,11(1):10-19
To reduce the amount of consumables and number of pipetting steps in high‐throughput screening, a constitutive expression system was developed that comprises four different promoters of varying strength. The system was validated by the expression of different sucrose phosphorylase enzymes from Leuconostoc mesenteroides, Lactobacillus acidophilus and Bifidobacterium adolescentis in 96‐deep‐ and low‐well plates at three temperatures. Drastically improved soluble expression in mini‐cultures was observed for the enzymes from L. mesenteroides strains by reducing the promoter strength from strong to intermediate and by expressing the proteins at lower temperatures. In contrast, the enzymes from B. adolescentis and L. acidophilus were expressed most efficiently with a strong promoter. The constitutive expression of sucrose phosphorylases in low‐well plates resulted in a level of activity that is equal or even better than what was achieved by inducible expression. Therefore, our plasmid set with varying constitutive promoters will be an indispensable tool to optimize enzyme expression for high‐throughput screening. 相似文献
5.
6.
Michelle Belton Camilla Rozanski Frank S. Prato Jeffrey J.L. Carson 《Journal of cellular biochemistry》2009,108(4):956-962
Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real‐time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real‐time. Two heat parameters were considered in combination with sham‐ and 100 mT‐exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult. J. Cell. Biochem. 108: 956–962, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
7.
Cellular functions are always performed by protein complexes. At present, many approaches have been proposed to identify protein complexes from protein–protein interaction (PPI) networks. Some approaches focus on detecting local dense subgraphs in PPI networks which are regarded as protein‐complex cores, then identify protein complexes by including local neighbors. However, from gene expression profiles at different time points or tissues it is known that proteins are dynamic. Therefore, identifying dynamic protein complexes should become very important and meaningful. In this study, a novel core‐attachment–based method named CO‐DPC to detect dynamic protein complexes is presented. First, CO‐DPC selects active proteins according to gene expression profiles and the 3‐sigma principle, and constructs dynamic PPI networks based on the co‐expression principle and PPI networks. Second, CO‐DPC detects local dense subgraphs as the cores of protein complexes and then attach close neighbors of these cores to form protein complexes. In order to evaluate the method, the method and the existing algorithms are applied to yeast PPI networks. The experimental results show that CO‐DPC performs much better than the existing methods. In addition, the identified dynamic protein complexes can match very well and thus become more meaningful for future biological study. 相似文献
8.
9.
《Luminescence》2003,18(4):224-228
The study addressed the effects of redox‐active compounds on trypsin activity. Series of organic oxidizers (quinones) and reducers (phenols) were chosen as model redox‐active compounds. Trypsin activity was quanti?ed by bioluminescent technique. Interactions of these compounds with trypsin were studied by ?uorescent and light absorption methods. Luminescence intensity decay constants in the reduced nicotinamidadeninedinucleotide (NADH): ?avinmononucleotide (FMN)‐oxidoreductase (R)–luciferase (L)–trypsin (T) (R + L + T) triple‐enzyme system were calculated and compared in the presence of different concentrations of quinones and phenols. The triple‐enzyme system was shown to be sensitive to quinones and not sensitive to phenols. It has been found that the effects produced by quinones on the coupled enzyme system (R + L) and on the trypsin molecule (T) are not related. The conclusions were extrapolated to the properties of other proteases and antiproteases. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
11.
Andreas Hoffmann Christiane Haas Stefan Hennig Kai Ostermann Thomas Bley Christian Lser Thomas Walther 《Engineering in Life Science》2019,19(6):400-411
Microbial consortia can be used to catalyze complex biotransformations. Tools to control the behavior of these consortia in a technical environment are currently lacking. In the present study, a synthetic biology approach was used to build a model consortium of two Saccharomyces cerevisiae strains where growth and expression of the fluorescent marker protein EGFP by the receiver strain is controlled by the concentration of α‐factor pheromone, which is produced by the emitter strain. We have developed a quantitative experimental and theoretical framework to describe population dynamics in the model consortium. We measured biomass growth and metabolite production in controlled bioreactor experiments, and used flow cytometry to monitor changes of the subpopulations and protein expression under different cultivation conditions. This dataset was used to parameterize a segregated mathematical model, which took into account fundamental growth processes, pheromone‐induced growth arrest and EGFP production, as well as pheromone desensitization after extended exposure. The model was able to predict the growth dynamics of single‐strain cultures and the consortium quantitatively and provides a basis for using this approach in actual biotransformations. 相似文献
12.
A large‐scale expression strategy for multimeric extracellular protein complexes using Drosophila S2 cells and its application to the recombinant expression of heterodimeric ligand‐binding domains of taste receptor 下载免费PDF全文
Atsuko Yamashita Eriko Nango Yuji Ashikawa 《Protein science : a publication of the Protein Society》2017,26(11):2291-2301
Many of the extracellular proteins or extracellular domains of plasma membrane proteins exist or function as homo‐ or heteromeric multimer protein complexes. Successful recombinant production of such proteins is often achieved by co‐expression of the components using eukaryotic cells via the secretory pathway. Here we report a strategy addressing large‐scale expression of hetero‐multimeric extracellular domains of plasma membrane proteins and its application to the extracellular domains of a taste receptor. The target receptor consists of a heterodimer of T1r2 and T1r3 proteins, and their extracellular ligand binding domains (LBDs) are responsible for the perception of major taste substances. However, despite the functional importance, recombinant production of the heterodimeric proteins has so far been unsuccessful. We achieved the successful preparation of the heterodimeric LBD by use of Drosophila S2 cells, which have a high secretory capacity, and by the establishment of a stable high‐expression clone producing both subunits at a comparable level. The method overcame the problems encountered in the conventional transient expression of the receptor protein in insect cells using baculovirus or vector lipofection, which failed in the proper heterodimer production because of the biased expression of T1r3LBD over T1r2LBD. The large‐scale expression methodology reported here may serve as one of the considerable strategies for the preparation of multimeric extracellular protein complexes. 相似文献
13.
A combination of gene expression ranking and co‐expression network analysis increases discovery rate in large‐scale mutant screens for novel Arabidopsis thaliana abiotic stress genes 下载免费PDF全文
Vanessa Ransbotyn Esti Yeger‐Lotem Omer Basha Tania Acuna Christoph Verduyn Michal Gordon Vered Chalifa‐Caspi Matthew A. Hannah Simon Barak 《Plant biotechnology journal》2015,13(4):501-513
14.
Jens Claßen Alexander Graf Florian Aupert Drte Solle Marek Hhse Thomas Scheper 《Engineering in Life Science》2019,19(5):341-351
This study was performed in order to evaluate a new LED‐based 2D‐fluorescence spectrometer for in‐line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10‐L fed‐batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D‐fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed‐batch process was used for model validation and prediction. An almost continuous in‐line bioprocess monitoring was realized because 2D‐fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D‐fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D‐fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures. 相似文献
15.
Ajith Anand Emily Wu Zhi Li Sue TeRonde Maren Arling Brian Lenderts Jasdeep S. Mutti William Gordon‐Kamm Todd J. Jones Nicholas Doane Chilcoat 《Plant biotechnology journal》2019,17(8):1636-1645
An efficient Agrobacterium‐mediated site‐specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter‐trap system consisting of a pre‐integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY‐ (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY‐). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%–22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full‐length site‐specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development. 相似文献
16.
Michael H. Studer Jaclyn D. DeMartini Simone Brethauer Heather L. McKenzie Charles E. Wyman 《Biotechnology and bioengineering》2010,105(2):231-238
The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary obstacle to low cost biological processing, and development of more easily converted plants and more effective enzymes would be of great benefit. Because no single parameter describes recalcitrance, superior variants can only be identified by measuring sugar release from plants subjected to pretreatment and enzymatic hydrolysis. However, genetic modifications of plants coupled with molecular engineering of deconstruction proteins and definition of pretreatment conditions create a very large sample set, and previous methods for biomass pretreatment at elevated temperatures and pressures prevented use of a fully integrated high‐throughput (HTP) screening pipeline. Herein, we report on the engineering of a novel HTP pretreatment system employing a 96 well‐plate format that withstands extreme pretreatment conditions for rapid screening of biomass–enzyme‐pretreatment combinations. This includes the development of new approaches to steam heating and water quenching the system that result in much faster heat up and cool down than previously possible and show consistent temperature histories across the multiwell plate. Coupled pretreatment and enzymatic hydrolysis performance of the well plate pretreatment system is shown to be consistent among the many wells in the device and also with performance of conventional tubular reactors. Biotechnol. Bioeng. 2010; 105: 231–238. © 2009 Wiley Periodicals, Inc. 相似文献
17.
18.
A novel chemiluminescence sensor for the determination of indomethacin based on sulfur and nitrogen co‐doped carbon quantum dot–KMnO4 reaction 下载免费PDF全文
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results. 相似文献
19.
A novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples 下载免费PDF全文
Saichai Lin Ning Gan Jiabin Zhang Xidong Chen Yuting Cao Tianhua Li 《Journal of molecular recognition : JMR》2015,28(6):359-368
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献