首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-elemene is one of the most commonly used antineoplastic drugs in cancer treatment. As a plant-derived natural chemical, biologically engineering microorganisms to produce germacrene A to be converted to β-elemene harbors great expectations since chemical synthesis and plant isolation methods come with their production deficiencies. In this study, we report the design of an Escherichia coli cell factory for the de novo production of germacrene A to be converted to β-elemene from a simple carbon source. A series of systematic approaches of engineering the isoprenoid and central carbon pathways, translational and protein engineering of the sesquiterpene synthase, and exporter engineering yielded high-efficient β-elemene production. Specifically, deleting competing pathways in the central carbon pathway ensured the availability of acetyl-coA, pyruvate, and glyceraldehyde-3-phosphate for the isoprenoid pathways. Adopting lycopene color as a high throughput screening method, an optimized NSY305N was obtained via error-prone polymerase chain reaction mutagenesis. Further overexpression of key pathway enzymes, exporter genes, and translational engineering produced 1161.09 mg/L of β-elemene in a shake flask. Finally, we detected the highest reported titer of 3.52 g/L of β-elemene and 2.13 g/L germacrene A produced by an E. coli cell factory in a 4-L fed-batch fermentation. The systematic engineering reported here generally applies to microbial production of a broader range of chemicals. This illustrates that rewiring E. coli central metabolism is viable for producing acetyl-coA-derived and pyruvate-derived molecules cost-effectively.  相似文献   

2.
酶的分子设计、改造与工程应用   总被引:4,自引:0,他引:4  
酶工程的研究已经发展到分子水平 ,在体外通过基因工程、化学、物理等手段改造酶分子结构与功能 ,大幅提高了酶分子的进化效率和催化效率 ,生产有价值的非天然酶。对酶工程学若干“热点”和前沿课题的研究、应用进行了概述 ,分析了国际上酶工程研究及应用技术、手段、方法 ,包括体外分子进化、核酶和抗体酶的设计、酶分子的定向固定化技术、酶蛋白分子的化学修饰、融合酶、人工合成及模拟酶等技术 ,并展望了酶工程的技术进步和应用的新进展。  相似文献   

3.
提高微生物油脂生产能力的研究进展   总被引:1,自引:0,他引:1  
郭小宇  杨兰  李宪臻  杨帆 《微生物学通报》2013,40(12):2295-2305
微生物油脂是生物柴油生产领域具有广阔前景的新油脂资源。然而, 利用产油微生物进行油脂的工业化生产仍存在限氮条件下油脂生产强度不够高、对廉价高氮生物质原料的利用效率低等瓶颈问题。随着近年来发酵工程、生物信息学及分子生物学技术的发展, 国内外研究者利用不同策略优化微生物油脂的生产条件, 并对其油脂积累代谢途径进行改造, 旨在获得适用于工业化生产的产油性能优良的油脂菌。本综述总结了国内外利用生化工程、基因工程以及新兴的转录因子工程策略提高产油微生物油脂生产强度和扩大产油微生物廉价底物利用范围方面的研究进展, 并展望了基于组学研究、模块途径工程以及反向代谢工程的综合策略在理性改造产油微生物以提高其油脂发酵性能中的应用。  相似文献   

4.
Metabolic engineering efforts require enzymes that are both highly active and specific toward the synthesis of a desired output product to be commercially feasible. The 3‐hydroxyacid (3HA) pathway, also known as the reverse β‐oxidation or coenzyme‐A‐dependent chain‐elongation pathway, can allow for the synthesis of dozens of useful compounds of various chain lengths and functionalities. However, this pathway suffers from byproduct formation, which lowers the yields of the desired longer chain products, as well as increases downstream separation costs. The thiolase enzyme catalyzes the first reaction in this pathway, and its substrate specificity at each of its two catalytic steps sets the chain length and composition of the chemical scaffold upon which the other downstream enzymes act. However, there have been few attempts reported in the literature to rationally engineer thiolase substrate specificity. In this study, we present a model‐guided, rational design study of ordered substrate binding applied to two biosynthetic thiolases, with the goal of increasing the ratio of C6/C4 products formed by the 3HA pathway, 3‐hydroxy‐hexanoic acid and 3‐hydroxybutyric acid. We identify thiolase mutants that result in nearly 10‐fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the thiolase for chain elongation, as well as expand our knowledge of sequence–structure–function relationship for this important class of enzymes.  相似文献   

5.
Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction.  相似文献   

6.
生态工程设计是生态工程建设的核心。明确生态工程设计的特点,是进行良好的生态工程设计的根本。通过生态设计研究进展的综述,从10个方面,以肇东市玉米生态工程设计为例,分析了生态工程设计的特点,并在此基础上,提出了今后进行生态工程设计应采取的策略。  相似文献   

7.
8.
阿维菌素的生物合成与途径工程   总被引:4,自引:0,他引:4  
阿维菌素是一种高效安全的大环内酯杀虫杀螨剂。本文介绍了阿维菌素生物合成的步骤及参与合成步骤的有关酶系统和基因簇。对阿维菌素 8个组分合成的遗传控制基因 ,特别是对其中B1a组分合成的遗传控制位点进行讨论分析 ,并介绍了利用途径工程改造阿维链霉菌生产合成单一高效组分B1a和提高活性组分产量的研究进展。  相似文献   

9.
Bioprocess engineering: now and beyond 2000   总被引:1,自引:0,他引:1  
Abstract: Bioprocess engineering may be defined as the translation of life-science discoveries into practical products, processes, or systems capable of serving the needs of society. It is a critical link from discovery to commercialization. Current bioprocess engineering is primarily focused on biopharmaceutical products of high dollar value per gram such as erythropoietin or growth hormones. However, other products of current interest include ethanol, amino acids, organic acids, antibiotics, and specialty chemicals. Current challenges for increased use of bioprocesses for producing bulk and semi-bulk chemicals include both technical and infrastructural barriers. Technical barriers are easy to identify and at times can be overcome by engineering improvements or changes brought about radical developments in science (e.g. recombinant DNA). Infrastructural barriers, such as raw-material substitutions or educational limitations are more difficult to define and change. Recently the National Academy of Sciences examined barriers to bioprocess engineering and issued a report entitled: "Putting Biotechnology to Work: Bioprocess Engineering". A key recommendation was the establishment of a coordinated long-range plan of research, development, training and education in bioprocess engineering involving participation by industry, academe and the federal government. The report was the first national analysis devoted entirely to bioprocess engineering and covered new topics such as space bioprocess engineering. Other topics covered by the author include the current state of the US chemical industry and future directions in three promising areas of bioprocess engineering environmental bioprocess engineering, marine bioprocess engineering and microsystem bioprocess engineering.  相似文献   

10.
It has become customary in engineering to require a modelling component in research endeavours. In addition, as the code for these models becomes more byzantine in complexity, it is difficult for reviewers and readers to discern their value and understand the underlying code. This opinion piece summarizes the negative experience of the author with the IPRO and OptMAVEn computational protein engineering models as well as problems with the optStoic metabolic pathway model. In our hands, these models often fail to predict reliable ways to engineer proteins and metabolic pathways.  相似文献   

11.
生物转化-从全细胞催化到代谢工程   总被引:2,自引:0,他引:2  
与传统的化学合成方法相比,利用生物的手段转化生产活性化合物及其衍生物无疑具有更大的吸引力。随着用于生物转化微生物种类的增多,生物转化的应用领域不断得到扩大。生物转化的发展经历了野生型全细胞催化,基因工程微生物全细胞反应,以及利用系统分析和代谢工程进行全局性调控等几个阶段。以下对这一发展趋势及相关研究的最新进展作一简要综述。  相似文献   

12.
13.
生物法制备平台化合物乙偶姻的最新研究进展   总被引:1,自引:0,他引:1  
乙偶姻(3-羟基-2-丁酮)作为一种应用广泛的食用香料和重要的平台化合物,具有广阔的工业应用前景。与传统的化学合成方法不同,高效、环保的乙偶姻生物制备方法,可以减轻资源和环境压力,促进我国低碳经济的发展。近来,生物法制备平台化学品乙偶姻取得了丰硕的研究成果。总结了最近几年国内外在该领域最新的研究热点及方向,简述了发酵法生产乙偶姻的优势菌株概况,重点综述了以糖类物质为底物生产乙偶姻的最新策略及研究成果、将微生物改造为生产手性乙偶姻的高效细胞炼制工厂以及将2,3-丁二醇或双乙酰作为发酵底物的研究趋势,并介绍了乙偶姻的分离纯化工艺。使用非致病性的安全菌株,高效率地利用廉价底物,并采用经济、简单、环保的分离纯化方式,从而生产具有高附加值的食品级或高手性纯度乙偶姻,是生物法制备乙偶姻产业化发展的可靠保障。  相似文献   

14.
This review discusses metabolic engineering research with an emphasis on evolutionary (whole cell and protein) engineering, which is an inverse metabolic engineering approach. For each section on metabolic, inverse metabolic and evolutionary engineering research, a general review of the major global studies in the literature is made and research examples from Turkey are given and discussed. It is expected that with the rapid development in systems biology and the novel powerful analytical technologies to identify the genetic basis of cellular phenotypes, metabolic and evolutionary engineering research will become widespread and increasingly important in Turkey, following global scientific trends.  相似文献   

15.
The fermentative production of l-threonine and l-isoleucine with Corynebacterium glutamicum is usually accompanied by the by-production of l-lysine, which shares partial biosynthesis pathway with l-threonine and l-isoleucine. Since the direct precursor for l-lysine synthesis, diaminopimelate, is a component of peptidoglycan and thus essential for cell wall synthesis, reducing l-lysine by-production could be troublesome. Here, a basal strain with eliminated l-lysine production was constructed from the wild type C. glutamicum ATCC13869 by deleting the chromosomal ddh and lysE. Furthermore, the basal strain as well as the ddh single mutant strain was engineered for l-threonine production by over-expressing lysC1, hom1 and thrB, and for l-isoleucine production by over-expressing lysC1, hom1, thrB and ilvA1. Fermentation experiments with the engineered strains showed that (i) deletion of ddh improved l-threonine production by 17%, and additional deletion of lysE further improved l-threonine production by 28%; (ii) deletion of ddh improved l-isoleucine production by 8% and improved cell growth by 21%, whereas additional deletion of lysE had no further influence on both l-isoleucine production and cell growth; (iii) l-lysine by-production was reduced by 95% and 86% in l-threonine and l-isoleucine production, respectively, by deletion of ddh and lysE. This is the first report on improving l-threonine and l-isoleucine production by deleting ddh and lysE in C. glutamicum. The results demonstrate deletion of ddh and lysE as an effective strategy to reduce l-lysine by-production without surrendering the cell growth of C. glutamicum.  相似文献   

16.
组织工程的一般考虑   总被引:8,自引:0,他引:8  
组织工程的最终目标是通过体外增减活细胞与其胞外环境相互作用而发育成具胡生物活性的组织或器官替代物,替换、修复组织或器官,或强化其生物学功能。本文主要讨论细胞移植和组织重建的影响因素和可能的方法。  相似文献   

17.
  1. Download : Download high-res image (243KB)
  2. Download : Download full-size image
  相似文献   

18.
Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.  相似文献   

19.
金城 《生物工程学报》2018,34(7):1021-1023
酶工程是酶学与工程科学融合的综合性科学技术,是现代生物技术的支柱之一。为促进国内酶工程研究的发展,本期"酶工程专刊"集中展现了我国酶工程专家学者在酶工程领域所取得的最新进展。  相似文献   

20.
Chondroitin sulfate A (CSA) is a valuable glycosaminoglycan that has great market demand. However, current synthetic methods are limited by requiring the expensive sulfate group donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and inefficient enzyme carbohydrate sulfotransferase 11 (CHST11). Herein, we report the design and integration of the PAPS synthesis and sulfotransferase pathways to realize whole-cell catalytic production of CSA. Using mechanism-based protein engineering, we improved the thermostability and catalytic efficiency of CHST11; its Tm and half-life increased by 6.9°C and 3.5 h, respectively, and its specific activity increased 2.1-fold. Via cofactor engineering, we designed a dual-cycle strategy of regenerating ATP and PAPS to increase the supply of PAPS. Through surface display engineering, we realized the outer membrane expression of CHST11 and constructed a whole-cell catalytic system of CSA production with an 89.5% conversion rate. This whole-cell catalytic process provides a promising method for the industrial production of CSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号