首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
刘栋 《植物学报》2021,56(6):647-650
磷是植物生长发育必需的大量矿质营养元素, 但自然界大部分土壤都存在严重缺磷的问题。为了适应这一营养逆境, 植物演化出一系列低磷胁迫应答反应。通过改变基因的转录水平调控低磷胁迫应答反应, 而转录因子PHR1在调控植物对低磷胁迫的转录响应中起关键作用。此外, 大部分陆生植物还能与丛枝菌根真菌建立共生关系, 通过丛枝菌根真菌更有效地从土壤中获取磷元素。最近, 中国科学院分子植物科学卓越创新中心王二涛研究组发现, 以PHR为中心的转录调控网络控制植物-丛枝菌根真菌共生的建立。因此, PHR不但在维持植物细胞自身的磷稳态中发挥作用, 而且参与植物与外界微生物的相互作用, 为植物有效地从环境中获得磷元素提供了另外一条途径。  相似文献   

4.
Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO2 deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.  相似文献   

5.
6.
Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the present study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity and the abundance of proteins involved in carbon assimilation and antioxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light (HL) intensity conditions (i.e. single stress). The underlying mechanisms for the increased growth in conditions of HL and sufficient nitrogen were a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions shifts plants from growth to survival by displaying anthocyanin accumulation and an increased number of proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants development from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors.  相似文献   

7.
8.
洪林  杨蕾  杨海健  王武 《植物学报》2020,55(4):481-496
低温、干旱、高盐和缺氧等多种不良环境影响植物的生长发育, 植物通过长期进化形成复杂的调节机制来适应这些不利条件。AP2/ERF是植物特有的转录因子, 在各种胁迫响应过程中发挥关键调控作用。近年来, 越来越多的研究表明, 植物激素介导的信号级联通路与逆境胁迫响应关系密切, AP2/ERF转录因子可与激素信号转导协同形成交叉调控网络。许多AP2/ERF转录因子通过响应植物激素脱落酸和乙烯, 激活依赖或不依赖于脱落酸和乙烯的胁迫响应基因的表达。此外, AP2/ERF转录因子参与赤霉素、细胞分裂素和油菜素内酯介导的生长发育和胁迫应答。该文简要综述了AP2/ERF转录因子的结构特征、转录调控、翻译后修饰、结合位点、协同互作蛋白及其参与调控依赖或不依赖激素信号转导途径的非生物胁迫响应研究进展, 为解析不同AP2/ERF转录因子在调控激素和胁迫响应网络中的作用提供理论依据。  相似文献   

9.
氮代谢参与植物逆境抵抗的作用机理研究进展   总被引:2,自引:0,他引:2  
王新磊  吕新芳 《广西植物》2020,40(4):583-591
近年来,植物所受到的诸如干旱、盐、高温、低氧、重金属胁迫和营养元素缺乏等环境胁迫越来越多,严重影响了植物的生长发育及作物的质量和产量。氮素是植物生长发育所需的必需营养元素,同时也是核酸、蛋白质和叶绿素的重要组成成分,其代谢过程与植物抵抗逆境的能力息息相关。氮代谢是指植物对氮素的吸收、同化和利用的全过程,是植物体内基础代谢途径之一。氮代谢主要从氮素吸收、同化及氨基酸代谢等方面参与植物的抗逆性,并通过调节离子吸收和转运、稳定细胞形态和蛋白质结构、维持激素平衡和细胞代谢水平、减少体内活性氧(reactive oxygen species,ROS)生成以及促进叶绿素合成等生理机制来影响植物抵抗非生物胁迫的能力。因此,提高植物在逆境下的氮代谢水平是减轻外界胁迫对其损伤的一种潜在途径。该文从氮素同化的基本途径出发,分别阐述了氮代谢在干旱胁迫、盐胁迫和高温胁迫等多个方面的逆境抵抗过程中的作用机理,为氮代谢参与植物抗逆性研究提供了有利参考。  相似文献   

10.
11.
Metabolism and function of coenzyme Q   总被引:26,自引:0,他引:26  
  相似文献   

12.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   

13.
Physiology and biochemistry of waterlogging tolerance in plants   总被引:7,自引:2,他引:5  
Waterlogging is a serious problem, which affects crop growth and yield in low lying rainfed areas. The main cause of damage under waterlogging is oxygen deprivation, which affect nutrient and water uptake, so the plants show wilting even when surrounded by excess of water. Lack of oxygen shift the energy metabolism from aerobic mode to anaerobic mode. Plants adapted to waterlogged conditions, have mechanisms to cope with this stress such as aerenchyma formation, increased availability of soluble sugars, greater activity of glycolytic pathway and fermentation enzymes and involvement of antioxidant defence mechanism to cope with the post hypoxia/anoxia oxidative stress. Gaseous plant hormone ethylene plays an important role in modifying plant response to oxygen deficiency. It has been reported to induce genes of enzymes associated with aerenchyma formation, glycolysis and fermentation pathway. Besides, nonsymbiotic-haemoglobins and nitric oxide have also been suggested as an alternative to fermentation for maintaining lower redox potential (low NADH/NAD ratio), and thereby playing an important role in anaerobic stress tolerance and signaling.  相似文献   

14.
It is widely accepted that nitrate but not ammonium improves tolerance of plants to hypoxic stress, although the mechanisms related to this beneficial effect are not well understood. Recently, nitrite derived from nitrate reduction has emerged as the major substrate for the synthesis of nitric oxide (NO), an important signaling molecule in plants. Here, we analyzed the effect of different nitrogen sources (nitrate, nitrite and ammonium) on the metabolic response and NO production of soybean roots under hypoxia. Organic acid analysis showed that root segments isolated from nitrate-cultivated plants presented a lower accumulation of lactate and succinate in response to oxygen deficiency in relation to those from ammonium-cultivated plants. The more pronounced lactate accumulation by root segments of ammonium-grown plants was followed by a higher ethanol release in the medium, evidencing a more intense fermentation under oxygen deficiency than those from nitrate-grown plants. As expected, root segments from nitrate-cultivated plants produced higher amounts of nitrite and NO during hypoxia compared to ammonium cultivation. Exogenous nitrite supplied during hypoxia reduced both ethanol and lactate production and stimulated cyanide-sensitive NO emission by root segments from ammonium-cultivated plants, independent of nitrate. On the other hand, treatments with a NO donor or a NO scavenger did not affect the intensity of fermentation of soybean roots. Overall, these results indicate that nitrite participates in the nitrate-mediated modulation of the fermentative metabolism of soybean roots during oxygen deficiency. The involvement of mitochondrial reduction of nitrite to NO in this mechanism is discussed.  相似文献   

15.
Regulation of the molecular response to oxygen limitations in plants   总被引:1,自引:0,他引:1  
  相似文献   

16.
Free radicals and other active derivatives of oxygen are inevitable by-products of biological redox reactions. Reduced oxygen species, such as hydrogen peroxide, the superoxide radical anion and hydroxyl radicals, inactivate enzymes and damage important cellular components. In addition, singlet oxygen, produced via formation of triplet state chlorophyll, is highly destructive. This oxygen species initiates lipid peroxidation, and produces lipid peroxy radicals and lipid hydroperoxides that are also very reactive. The increased production of toxic oxygen derivatives is considered to be a universal or common feature of stress conditions. Plants and other organisms have evolved a wide range of mechanisms to contend with this problem. The antioxidant defence system of the plant comprises a variety of antioxidant molecules and enzymes. Considerable interest has been focused on the ascorbate-glutathione cycle because it has a central role in protecting the chloroplasts and other cellular compartments from oxidative damage. It is clear that the capacity and activity of the antioxidative defence systems are important in limiting photo-oxidative damage and in destroying active oxygen species that are produced in excess of those normally required for signal transduction or metabolism. In our studies on this system, we became aware that the answers to many unresolved questions concerning the nature and regulation of the antioxidative defence system could not be obtained easily by either a purely physiological or purely biochemical approach. Transgenic plants offered us a means by which to achieve a more complete understanding of the roles of the enzymes involved in protection against stress of many types: environmental and man-made. The ability to engineer plants which express introduced genes at high levels provides an opportunity to manipulate the levels of these enzymes, and hence metabolism in vivo. Studies on transformed plants expressing increased activities of single enzymes of the antioxidative defence system indicate that it is possible to confer a degree of tolerence to stress by this means. However, attempts to increase stress resistance by simply increasing the activity of one of the antioxidant enzymes have not always been successful presumably because of the need for a balanced interaction of protective enzymes. The study of these transformed plants has allowed a more complete understanding of the roles of individual enzymes in metabolism. Protection against oxidative stress has become a feasible objective through the application of molecular genetic techniques in conjunction with a biochemical and physiological approach.  相似文献   

17.
BACKGROUND AND AIMS: The aim of this study was to investigate the importance of pyrophosphate (PPi) for plant metabolism and survival under low oxygen stress. Responses of roots of wild-type potato plants were compared with roots of transgenic plants containing decreased amounts of PPi as a result of the constitutive expression of Escherichia coli pyrophosphatase in the cytosol. METHODS: For the experiments, roots of young wild-type and transgenic potato plants growing in nutrient solution were flushed for 4 d with nitrogen, and subsequently metabolite contents as well as enzyme activities of the glycolytic pathway were determined. KEY RESULTS AND CONCLUSIONS: In roots of transgenic plants containing 40% less PPi, UDPglucose accumulated while the concentrations of hexose-6-phosphate, other glycolytic intermediates and ATP were decreased, leading to a growth retardation in aerated conditions. Apart from metabolic alterations, the activity of sucrose synthase was increased to a lower extent in the transgenic line than in wild type during hypoxia. These data suggest that sucrose cleavage was inhibited due to PPi deficiency already under aerated conditions, which has severe consequences for plant vitality under low oxygen. This is indicated by a reduction in the glycolytic activity, lower ATP levels and an impaired ability to resume growth after 4 d of hypoxia. Interestingly, the phosphorylation of fructose-6-phosphate via PPi-dependent phosphofructokinase was not altered in roots of transgenic plants. Nevertheless, our data provide some evidence for the importance of PPi to maintain plant growth and metabolism under oxygen deprivation.  相似文献   

18.
Class III peroxidases (PODs) have many functions in plant metabolism mainly dependent on their various physiological reducing substrates. Their involvement in plant differentiation and in the response against environmental stress is well known. Several evidences underline that ascorbate (ASC) levels affect POD reactions and, as a consequence, interfere with the metabolic pathways controlled by these isoenzymes. Ascorbate peroxidases (APXs), enzymes belonging to a different class of peroxidases (class I), are often present in the same cellular compartments in which PODs are also active. Since both APXs and PODs specifically utilise hydrogen peroxide as oxidising substrate they can compete, when co-present, for the same substrate. In this review, attention focuses on some of the physiological processes in which both ASC metabolism and PODs are involved. In particular, the scavenging of reactive oxygen species (ROS) during photosynthesis, cell elongation and wall stiffening as well as programmed cell death have been considered thoroughly. The relations between PODs and ASC metabolism have been discussed also in the attempt to outline their relevance for the correct plant development as well as for the perception/response of external stimuli allowing plants to cope with unfavourable conditions.  相似文献   

19.
20.
Physiological and biochemical changes in plants under waterlogging   总被引:4,自引:0,他引:4  
Waterlogging usually results from overuse and/or poor management of irrigation water and is a serious constraint with damaging effects. The rapidly depleting oxygen from submerged root zone is sensed and plant adjusts expressing anaerobic proteins. Plant cells shift their metabolism towards low energy yielding anaerobic fermentation pathways in the absence of oxygen. Structural modifications are also induced as aerenchyma formation and adventitious rootings, etc. Studies at molecular and biochemical levels to facilitate early perception and subsequent responses have also been worked out to produce resistant transgenic plants. This review explores the sequential changes of plant responses at different levels regarding their defense strategies and efforts made to enhance them, tailoring crucial regulators so that they can withstand waterlogging stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号