首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海蛎是一种营养和医药价值较高的咸水双壳类动物,在世界各地被广泛养殖。海蛎壳副产品是一种天然生物质资源,由95%的碳酸钙和5%的有机基质组成。海蛎壳的多尺度、多层次“砖-泥”独特结构,使其具有良好的机械稳定性、生物相容性、可降解性和优异的吸附特性。首先,介绍了海蛎壳生物质的理化性质和天然独特微纳米结构,总结了海蛎壳在农业、工业、生物医药领域的研究现状,详细阐述了其在污水治理、土壤改良、天然抗菌剂(食品工业和生物医药)、骨组织工程、医药原料、生物填料、工业催化剂及分散载体、建筑工业填料、功能化涂料等领域的研究现状。其次,概述了利用生物转化技术将海蛎壳转化为生物能源、新型生物质材料等方面的研究进展。最后,展望了海蛎壳生物质资源及其衍生物未来在工业、农业、医药领域的潜在应用。  相似文献   

2.
In this work, several fungi with geoactive properties, including Aspergillus niger, Beauveria caledonica and Serpula himantioides, were used to investigate their potential bioweathering effects on zinc silicate and zinc sulfide ores used in zinc extraction and smelting, to gain understanding of the roles that fungi may play in transformations of such minerals in the soil, and effects on metal mobility. Despite the recalcitrance of these minerals, new biominerals resulted from fungal interactions with both the silicate and the sulfide, largely resulting from organic acid excretion. Zinc oxalate dihydrate was formed through oxalate excretion by the test fungi and the mineral surfaces showed varying patterns of bioweathering and biomineral formation. In addition, calcium oxalate was formed from the calcium present in the mineral ore fractions, as well as calcite. Such metal immobilization may indicate that the significance of fungi in effecting metal mobilization from mineral ores such as zinc silicate and zinc sulfide is rather limited, especially if compared with bacterial sulfide leaching. Nevertheless, important bioweathering activities of fungi are confirmed which could be of local significance in soils polluted by such materials, as well as in the mycorrhizosphere.  相似文献   

3.
丝蛋白生物材料具有优异的力学性能、良好的生物相容性及可降解性,在生物医学领域具有巨大的应用潜力。现有丝蛋白生物材料在结构和功能方面的相关知识,为设计合成新型丝蛋白生物材料提供了理论基础。此外,利用基因工程技术可将编码新肽或结构域的基因序列添加到编码丝蛋白的基因序列中,以获得具有新功能的丝蛋白生物材料,并更好地满足现代生物医学的需求。文中总结了基因工程功能化的丝蛋白生物材料在生物医学领域中的应用现状和发展前景。  相似文献   

4.
The demand for new materials and products is still growing and the interest in naturally formed biopolymers and biominerals, such as chitin, calcium precipitates and silica is increasing. Photosynthesizing microalgae of the family Bacillariophyceae (diatoms) produce silica exoskeletons with a potential to be used in specific industrial or technological processes, they also are an excellent model in studies of silicon biomineralization. In contrast to geologically aged diatomaceous earth, the freshly prepared silica of cultured or harvested natural diatoms has been characterized insufficiently with respect to the properties (e.g. purity, specific surface area, porosity) required for technological and industrial application. In this contribution we summarize aspects of cellular processes that are involved in silicon biomineralization of diatoms and the current knowledge of the characterization of diatomaceous silica, following methods used for synthetically derived silica-based materials.  相似文献   

5.
Charge contrast imaging (CCI) is a dynamic phenomenon recently reported in insulating and semiconducting materials imaged with low vacuum or variable pressure scanning electron microscopes (SEM). Data presented in this paper illustrates that CCI can also be applied to biominerals and biological soft-tissues and that useful and unique structural information can be obtained from routine samples. Various resin-embedded samples were considered and example images from several different biomaterials are presented. Due to the diverse nature of samples that appear to exhibit charge contrast, this imaging technique has prospective application in a wide range of biological and biomedical research. This work represents the first application of CCI to biomaterials and in particular, highlights a new method for investigating the formation, structure and growth of biominerals.  相似文献   

6.
生物质谱分析的研究进展及临床应用   总被引:1,自引:0,他引:1  
质谱分析技术已应用于化学、化工、环境、能源、医药、运动医学、刑侦科学、生命科学、材料科学等各个领域。阐述目前生物质谱技术的类型、原理以及在医学领域中的应用,进而分析质谱技术在未来发展的前景。  相似文献   

7.
It has been thought that phosphorus in biominerals made of amorphous calcium carbonate (ACC) might be related to ACC formation, but no such phosphorus-containing compounds have ever been identified. Crustaceans use ACC biominerals in exoskeleton and gastroliths so that they will have easy access to calcium carbonate inside the body before and after molting. We have identified phosphoenolpyruvate and 3-phosphoglycerate, intermediates of the glycolytic pathway, in exoskeleton and gastroliths and found them important for stabilizing ACC.  相似文献   

8.
Mesocestoides corti (syn. vogae), as many other cestode platyhelminthes, contains abundant mineralized structures called calcareous corpuscles. These concretions may constitute as much as 40% of the dry weight of the organisms, but their function remains poorly understood. In this work, we reviewed the mineral composition of the calcareous corpuscles of M. corti. X-ray diffraction pattern showed that the major mineral component of the corpuscles is a hydrated form of calcium carbonate, monohydrocalcite, also confirmed by infrared spectrometry. The baseline shift of the X-ray diffraction spectra suggested the presence of amorphous calcium carbonate, accordingly to previous reports, and an organic matrix was confirmed by FTIR. Monohydrocalcite is a rare mineral unusually found in biominerals. Although the significance of monohydrocalcite in biominerals has not been determined, the knowledge of corpuscles composition is of relevance to establish their function and for the elucidation of the mechanisms involved in mineralization processes.  相似文献   

9.
Biomineralized tissues are widespread in animals. They are essential elements in skeletons and in statocysts. The function of both can only be understood with respect to gravitational force, which has always been present. Therefore, it is not astonishing to identify microgravity as a factor influencing biomineralization, normally resulting in the reduction of biomineralized materials. All known biominerals are composite materials, in which the organic matrix and the inorganic materials, organized in crystals, interact. If, during remodeling and turnover processes under microgravity, a defective organization of these crystals occurs, a reduction in biomineralized materials could be the result. To understand the influence of microgravity on the formation of biocrystals, we studied the shell-building process of the snail Biomphalaria glabrata as a model system. We show that, under microgravity (space shuttle flights STS-89 and STS-90), shell material is built in a regular way in both adult snails and snail embryos during the beginning of shell development. Microgravity does not influence crystal formation. Because gravity has constantly influenced evolution, the organization of biominerals with densities near 3 must have gained independence from gravitational forces, possibly early in evolution.  相似文献   

10.
Biomineralization is a common process in most vascular plants, but poorly investigated for trees. Although the presence of calcium oxalate and silica accumulation has been reported for some tree species, the chemical composition, abundance, and quantification of biominerals remain poorly documented. However, biominerals may play important physiological and structural roles in trees, especially in forest ecosystems, which are characterized by nutrient‐poor soils. In this context, our study aimed at investigating the morphology, distribution, and relative abundance of biominerals in the different vegetative compartments (foliage, branch, trunk, and root) of Fagus sylvatica L. and Acer pseudoplatanus L. using a combination of scanning electron microscopy and tomography analyses. Biomineral crystallochemistry was assessed by X‐ray diffraction and energy‐dispersive X‐ray analyses, while calcium, silicon, and oxalic acid were quantified in the compartments and at the forest scale. Our analyses revealed that biominerals occurred as crystals or coating layers mostly in bark and leaves and were identified as opal, whewellite, and complex biominerals. In both tree species, opal was mostly found in the external tissues of trunk, branch, and leaves, but also in the roots of beech. In the stand, opal represents around 170 kg/ha. Whewellite was found to suit to conductive tissues (i.e., axial phloem parenchyma, vascular bundles, vessel element) in all investigated compartments of the two tree species. The shape of whewellite was prismatic and druses in beech, and almost all described shapes were seen in sycamore maple. Notably, the amount of whewellite was strongly correlated with the total calcium in all investigated compartments whatever the tree species is, suggesting a biologic control of whewellite precipitation. The amount of whewellite in the aboveground biomass of Montiers forest was more important than that of opal and was around 1170 kg/ha. Therefore, biominerals contribute in a substantial way to the biogeochemical cycles of silicon and calcium.  相似文献   

11.
Plant biominerals are not always well characterized, although this information is important for plant physiology and can be useful for taxonomic purposes. In this work, fresh plant material of seven wild neotropical species of genus Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., taken from different habitats, were studied to characterize the biominerals in their internal tissues. For the first time, samples from primary and secondary veins of leaves were investigated by means of infrared spectroscopy, complemented with X-ray powder diffractometry and scanning electron microscopy. The spectroscopic results, supported by X-ray powder diffractometry, suggest that the calcium oxalate is present in the form of whewellite (CaC2O4 x H2O) in all the investigated samples. It is interesting to emphasize that all IR spectra obtained were strongly similar in all species studied, thus indicating an identical chemical composition in terms of the biominerals found. In this sense, the results suggest that the species of Canna show similar ability to produce biogenic silica and produce an identical type of calcium oxalate within their tissues. These results can be an additional trait to support the relationship among the families of Zingiberales.  相似文献   

12.
The infrared spectroscopic investigation of biominerals isolated from different Cactaceae species belonging to the Opuntioideae subfamily shows the presence of a very complex mineral composition, including whewellite (monohydrated calcium oxalate), opal (SiO2) and calcite (CaCO3). This is the first report on the presence of a calcium carbonate in these types of plants.  相似文献   

13.
Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein. Via genetic engineering, the basic elastin sequence was modified with the SN(A)15 domain of statherin, whose interaction with calcium phosphate is well-established. These new materials retain the biocompatibility, "smart" nature, and desired mechanical behavior of the elastin-like recombinamer (ELR) family. Mineralization in simulated body fluid (SBF) in the presence of these recombinamers reveals surprising differences. Two of the polymers inhibit calcium phosphate deposition (although they contain the statherin segment). In contrast, the third polymer, which has a triblock structure, efficiently controls the calcium phosphate formation, yielding spherical hydroxyapatite (HAP) nanoparticles with diameters from 1 to 3 nm after 1 week in SBF at 37 °C. However, at lower temperatures, no precipitation is observed with any of the polymers. The data thus suggest that the molecular design of ELRs containing statherin segments and the selection of an appropriate polymer structure are key parameters to obtain functional materials for the development of intelligent systems for hard tissue engineering and subsequent in vivo applications.  相似文献   

14.
激光自被应用于医学,临床以来,科学家对其进行了多方面研究,并根据其特性,分别应用于医学诊断与治疗。随着科学技术的发展,在医学领域中应用的激光种类也越来越多,特别是KTP绿激光的多学科应用。为医学临床提供了新的治疗方法。本文就激光的特性、KTP绿激光的发展及医学,临床应用做一简要概述。  相似文献   

15.
ABSTRACT

Biomineralization by living organisms are common phenomena observed everywhere. Molluskan shells are representative biominerals that have fine microstructures with controlled morphology, polymorph, and orientation of CaCO3 crystals. A few organic molecules involved in the biominerals play important roles in the formation of such microstructures. Analyses of structure–function relationships for matrix proteins in biominerals revealed that almost all matrix proteins have an acidic region for the binding of calcium ion in CaCO3 crystals and interaction domains for other organic molecules. On the other hand, biomineralization of metal nanoparticles by microorganisms were also investigated. Gold nanoparticles and quantum dots containing cadmium were successfully synthesized by bacteria or a fungus. The analyses of components revealed that glycolipids, oligosaccharides, and lactic acids have key roles to synthesize the gold nanoparticle in Lactobacillus casei as reductants and dispersants. These researches about biomineralization will give new insights for material and environmental sciences in the human society.  相似文献   

16.
Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence and, as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on ‘top-down’ and ‘bottom-up’ approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescence applications in chemical and biological fields. Finally, a brief overview of synthetic processes using the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.  相似文献   

17.
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo‐) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro‐) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high‐throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome‐scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.  相似文献   

18.
李忠明  陈五高 《激光生物学报》1996,5(2):855-858,854
本文介绍了激光荧光光谱,拉曼光谱、反射、透射光谱、光声光谱,热透镜光谱、电离光谱、皮秒光谱等光谱技术,以及它们在医学诊断、病理研究等方面的应用,并就其发展与应用提出几点看法。  相似文献   

19.
20.
Biomineralization, the capacity to form minerals, has evolved in a great diversity of bacterial lineages as an adaptation to different environmental conditions and biological functions. Microbial biominerals often display original properties (morphology, composition, structure, association with organics) that significantly differ from those of abiotically formed counterparts, altogether defining the ‘mineral phenotype’. In principle, it should be possible to take advantage of microbial biomineralization processes to design and biomanufacture advanced mineral materials for a range of technological applications. In practice, this has rarely been done so far and only for a very limited number of biomineral types. This is mainly due to our poor understanding of the underlying molecular mechanisms controlling microbial biomineralization pathways, preventing us from developing bioengineering strategies aiming at improving biomineral properties for different applications. Another important challenge is the difficulty to upscale microbial biomineralization from the lab to industrial production. Addressing these challenges will require combining expertise from environmental microbiologists and geomicrobiologists, who have historically been working at the forefront of research on microbe–mineral interactions, alongside bioengineers and material scientists. Such interdisciplinary efforts may in the future allow the emergence of a mineral biomanufacturing industry, a critical tool towards the development more sustainable and circular bioeconomies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号