共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: To investigate roles of quorum‐sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin‐resistant variant (hereinafter DR1R). Methods and Results: The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane‐degradation and biofilm‐formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm‐formation and hexadecane‐biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild‐type cell supernatant and exogenous C12‐AHL. Conclusions: The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. Significance and Impact of the Study: This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. 相似文献
2.
Hai‐Bo Liu Joon‐Hee Lee Jung Sun Kim Sunghoon Park 《Biotechnology and bioengineering》2010,106(1):119-126
QscR is a quorum‐sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR‐type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo‐protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3‐oxododecanoyl‐homoserine lactone (3OC12‐HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell‐based assay using QscR‐overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS‐related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose‐dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12‐HSL‐dependent QscR activity in vitro at a concentration of 50‐fold molar excess over 3OC12‐HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR‐type receptor proteins. Biotechnol. Bioeng. 2010; 106: 119–126. © 2010 Wiley Periodicals, Inc. 相似文献
3.
Kimberly C Tu Wenyun Lu N P Ong Bonnie L Bassler Ned S Wingreen 《Molecular systems biology》2011,7(1)
Quorum sensing is a chemical signaling mechanism used by bacteria to communicate and orchestrate group behaviors. Multiple feedback loops exist in the quorum‐sensing circuit of the model bacterium Vibrio harveyi. Using fluorescence microscopy of individual cells, we assayed the activity of the quorum‐sensing circuit, with a focus on defining the functions of the feedback loops. We quantitatively investigated the signaling input–output relation both in cells with all feedback loops present as well as in mutants with specific feedback loops disrupted. We found that one of the feedback loops regulates receptor ratios to control the integration of multiple signals. Together, the feedback loops affect the input–output dynamic range of signal transmission and the noise in the output. We conclude that V. harveyi employs multiple feedback loops to simultaneously control quorum‐sensing signal integration and to ensure signal transmission fidelity. 相似文献
4.
Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study 下载免费PDF全文
D. Ravindran S. Ramanathan K. Arunachalam G.P. Jeyaraj K.P. Shunmugiah V.R. Arumugam 《Journal of applied microbiology》2018,124(6):1425-1440
5.
Gong‐Hong Wei Gwenael Badis Michael F Berger Teemu Kivioja Kimmo Palin Martin Enge Martin Bonke Arttu Jolma Markku Varjosalo Andrew R Gehrke Jian Yan Shaheynoor Talukder Mikko Turunen Mikko Taipale Hendrik G Stunnenberg Esko Ukkonen Timothy R Hughes Martha L Bulyk Jussi Taipale 《The EMBO journal》2010,29(13):2147-2160
6.
Georgy Popov Elena Evdokimova Peter J. Stogios Alexei Savchenko 《Protein science : a publication of the Protein Society》2020,29(3):803-808
Acyl‐coenzyme A‐dependent N‐acetyltransferases (AACs) catalyze the modification of aminoglycosides rendering the bacteria carrying such enzymes resistant to this class of antibiotics. Here we present the crystal structure of AAC(3)‐Ia enzyme from Serratia marcescens in complex with coenzyme A determined to 1.8 Å resolution. This enzyme served as an architype for the AAC enzymes targeting the amino group at Position 3 of aminoglycoside main aminocyclitol ring. The structure of this enzyme has been previously determined only in truncated form and was interpreted as distinct from subsequently characterized AACs. The reason for the unusual arrangement of secondary structure elements of AAC(3)‐Ia was not further investigated. By determining the full‐length structure of AAC(3)‐Ia we establish that this enzyme adopts the canonical AAC fold conserved across this family and it does not undergo through significant rearrangement of secondary structure elements upon ligand binding as was proposed previously. In addition, our results suggest that the C‐terminal tail in AAC(3)‐Ia monomer forms intramolecular hydrogen bonds that contributes to formation of stable dimer, representing the predominant oligomeric state for this enzyme. 相似文献
7.
8.
Debanu Das Hsiu‐Ju Chiu Carol L. Farr Joanna C. Grant Lukasz Jaroszewski Mark W. Knuth Mitchell D. Miller Henry J. Tien Marc‐André Elsliger Ashley M. Deacon Adam Godzik Scott A. Lesley Ian A. Wilson 《Proteins》2014,82(6):1086-1092
Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas‐specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure‐based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family. Proteins 2014; 82:1086–1092. © 2013 Wiley Periodicals, Inc. 相似文献
9.
Bryan K. Ward Sarah L. Rea Aaron L. Magno Bernadette Pedersen Suzanne J. Brown Shelby Mullin Ajanthy Arulpragasam Evan Ingley Arthur D. Conigrave Thomas Ratajczak 《Journal of cellular physiology》2018,233(1):38-56
The mechanisms responsible for the processing and quality control of the calcium‐sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two‐hybrid screen of the CaSR C‐terminal tail (residues 865–1078), we identified osteosarcoma‐9 (OS‐9) protein as a binding partner. OS‐9 is an ER‐resident lectin that targets misfolded glycoproteins to the ER‐associated degradation (ERAD) pathway through recognition of specific N‐glycans by its mannose‐6‐phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS‐9 co‐localize in the ER in COS‐1 cells. In immunoprecipitation studies with co‐expressed OS‐9 and CaSR, OS‐9 specifically bound the immature form of wild‐type CaSR in the ER. OS‐9 also bound the immature forms of a CaSR C‐terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild‐type receptor. OS‐9 binding to immature CaSR required the MRH domain of OS‐9 indicating that OS‐9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS‐9 and the CaSR, one involving both C‐terminal domains of the two proteins and the other involving both N‐terminal domains. This suggests the possibility of more than one functional interaction between OS‐9 and the CaSR. When we investigated the functional consequences of altered OS‐9 expression, neither knockdown nor overexpression of OS‐9 was found to have a significant effect on CaSR cell surface expression or CaSR‐mediated ERK1/2 phosphorylation. 相似文献
10.
Glucose is a simple sugar that plays an essential role in many basic metabolic and signaling pathways. Many proteins have binding sites that are highly specific to glucose. The exponential increase of genomic data has revealed the identity of many proteins that seem to be central to biological processes, but whose exact functions are unknown. Many of these proteins seem to be associated with disease processes. Being able to predict glucose‐specific binding sites in these proteins will greatly enhance our ability to annotate protein function and may significantly contribute to drug design. We hereby present the first glucose‐binding site classifier algorithm. We consider the sugar‐binding pocket as a spherical spatio‐chemical environment and represent it as a vector of geometric and chemical features. We then perform Random Forests feature selection to identify key features and analyze them using support vector machines classification. Our work shows that glucose binding sites can be modeled effectively using a limited number of basic chemical and residue features. Using a leave‐one‐out cross‐validation method, our classifier achieves a 8.11% error, a 89.66% sensitivity and a 93.33% specificity over our dataset. From a biochemical perspective, our results support the relevance of ordered water molecules and ions in determining glucose specificity. They also reveal the importance of carboxylate residues in glucose binding and the high concentration of negatively charged atoms in direct contact with the bound glucose molecule. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
11.
Structural analysis of protein‐ligand interactions: the binding of endogenous compounds and of synthetic drugs 下载免费PDF全文
The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein‐ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug‐like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co‐occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
Cleavage of the backbone of poly(cis‐1,4‐isoprene) (IR) in solid rubber material was accomplished by the addition of partially purified latex clearing protein (Lcp1VH2) using a 200‐mL enzyme reactor. Two strategies for the addition of Lcp1VH2 were studied revealing that the daily addition of 50 µg mL?1 of Lcp1VH2 for 5 days was clearly a more efficient regime in comparison to a one‐time addition of 250 µg of Lcp1VH2 at the beginning. Soluble oligo(cis‐1,4‐isoprene) molecules occurred as degradation products and were identified by ESI‐MS and GPC. Oxygenase activity of Lcp1VH2 with solid IR particles as substrate was shown for the first time by measuring the oxygen consumption in the reaction medium. A strong decrease of the dissolved oxygen concentration was detected at the end of the assay, which indicates an increase in the number of cleavage reactions. The oligo(cis‐1,4‐isoprene) molecules comprised 1 to 11 isoprene units and exhibited an average molecular weight (Mn) of 885 g mol?1. Isolation of the oligo(cis‐1,4‐isoprene) molecules was achieved by using silica gel column chromatography. The relative quantification of the isolated products was performed by HPLC‐MS after derivatization with 2,4‐dinitrophenilhydrazyne yielding a concentration of total degradation products of 1.62 g L?1. Analysis of the polymer surface in samples incubated for 3 days with Lcp1VH2 via ATR‐FTIR indicated the presence of carbonyl groups, which occurred upon the cleavage reaction. This study presents a cell‐free bioprocess as an alternative rubber treatment that can be applied for the partial degradation of the polymer. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:890–899, 2018 相似文献
13.
14.
15.
Yongjing Xie Soyoung Min Níal P. Harte Hannah Kirk John E. O'Brien H. Paul Voorheis Catharina Svanborg K. Hun Mok 《Proteins》2013,81(1):1-17
H uman α ‐lactalbumin m ade le thal to t umor cells (HAMLET) and its analogs are partially unfolded protein‐oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge‐specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively‐charged lysine residues to negatively‐charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild‐type α‐lactalbumin‐oleic acid complex. With the addition of OA, the wild‐type and guanidinated α‐lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α‐lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively‐charged basic groups on α‐lactalbumin and the negatively‐charged carboxylate groups on OA molecules play an essential role in the binding of OA to α‐lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
16.
17.
DNA‐binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA‐binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein–DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein–DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein–DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA‐binding proteins and structural variations. The results indicate that HS and MS DNA‐binding domains have larger conformational changes upon DNA‐binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147–1161. © 2016 Wiley Periodicals, Inc. 相似文献
18.
Stephan Jakobi Tran Xuan Phong Nguyen François Debaene Alexander Metz Sarah Sanglier‐Cianférani Klaus Reuter Gerhard Klebe 《Proteins》2014,82(10):2713-2732
Interference with protein–protein interactions of interfaces larger than 1500 Å2 by small drug‐like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot‐spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot‐spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug‐like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot‐spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano‐ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. Proteins 2014; 82:2713–2732. © 2014 Wiley Periodicals, Inc. 相似文献
19.
Hartmut H. Niemann Ermanno Gherardi Willem M. Bleymüller Dirk W. Heinz 《Protein science : a publication of the Protein Society》2012,21(10):1528-1539
The physiological relevance of contacts in crystal lattices often remains elusive. This was also the case for the complex between the invasion protein internalin B (InlB) from Listeria monocytogenes and its host cell receptor, the human receptor tyrosine kinase (RTK) MET. InlB is a MET agonist and induces bacterial host cell invasion. Activation of RTKs generally involves ligand‐induced dimerization of the receptor ectodomain. The two currently available crystal structures of the InlB:MET complex show the same arrangement of InlB and MET in a 1:1 complex, but different dimeric 2:2 assemblies. Only one of these 2:2 assemblies is predicted to be stable by a computational procedure. This assembly is mainly stabilized by a contact between the Cap domain of InlB from one and the Sema domain of MET from another 1:1 complex. Here, we probe the physiological relevance of this interaction. We generated variants of the leucine‐rich repeat (LRR) protein InlB by inserting an additional repeat between the first and the second LRR. This should allow formation of the 1:1 complex but disrupt the potential 2:2 complex involving the Cap‐Sema contact due to steric distortions. A crystal structure of one of the engineered proteins showed that it folded properly. Binding affinity to MET was comparable to that of wild‐type InlB. The InlB variant induced MET phosphorylation and cell scatter like wild‐type InlB. These results suggest that the Cap‐Sema interaction is not physiologically relevant and support the previously proposed assembly, in which a 2:2 InlB:MET complex is built around a ligand dimer. 相似文献