首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
《Process Biochemistry》2014,49(12):2078-2085
As an important feedstock in petrochemistry, isoprene is used in a wide range of industrial applications. It is produced almost entirely from petrochemical sources; however, these sources are being progressively depleted. A reliable biological process for isoprene production utilizing renewable feedstocks would be an industry-redefining development. There are two biosynthetic pathways producing isoprene: the mevalonate (MVA) pathway and the methyl erythritol 1-phosphate (MEP) pathway. In this study, the MEP pathway was modified in Escherichia coli BL21 (DE3) to produce isoprene. The isoprene synthase (IspS) gene chemically synthesized from Populus alba after codon optimization for expression in E. coli was heterologously expressed. The endogenous genes of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) were over-expressed. The isopentenyl pyrophosphate isomerase (Idi) gene from Streptococcus pneumoniae was exogenously over-expressed, and farnesyl diphosphate synthase (ispA) was weakened to enhance the yield. The control strain harboring empty plasmids did not emit any isoprene. The over-expression of the DXR gene only had little impact on the yield of isoprene. Idi from S. pneumoniae played a significant role in the improvement of isoprene production. The highest yield was achieved by an ispA-weakened DXS-IDI-IspS recombinant with 19.9 mg/l isoprene, which resulted in a 33-fold enhancement of the isoprene yield from the IspS recombinant.  相似文献   

3.
4.
BACKGROUND: Viruses are being exploited as vectors to deliver therapeutic genetic information into target cells. The success of this approach will depend on the ability to overcome current limitations, especially in terms of safety and efficiency, through molecular engineering of the viral particles. METHODS: Here we show that in vitro directed evolution can be successfully performed to randomize the viral capsid by error prone PCR and to obtain mutants with improved phenotype. RESULTS: To demonstrate the potential of this technology we selected several adeno-associated virus (AAV) capsid variants that are less efficiently neutralized by human antibodies. These mutations can be used to generate novel vectors for the treatment of patients with pre-existing immunity to AAV. CONCLUSIONS: Our results demonstrate that combinatorial engineering overcomes the limitations of rational design approaches posed by incomplete understanding of the infectious process and at the same time offers a powerful tool to dissect basic viral biology by reverse genetics.  相似文献   

5.
We report a first of its kind functional cell surface display of nucleic acid polymerase and its directed evolution to efficiently incorporate 2′-O-methyl nucleotide triphosphates (2′-OMe-NTPs). In the development of polymerase cell surface display, two autotransporter proteins (Escherichia coli adhesin involved in diffuse adherence and Pseudomonas aeruginosa esterase A [EstA]) were employed to transport and anchor the 68-kDa Klenow fragment (KF) of E. coli DNA polymerase I on the surface of E. coli. The localization and function of the displayed KF were verified by analysis of cell outer membrane fractions, immunostaining, and fluorometric detection of synthesized DNA products. The EstA cell surface display system was applied to evolve KF for the incorporation of 2′-OMe-NTPs and a KF variant with a 50.7-fold increased ability to successively incorporate 2′-OMe-NTPs was discovered. Expanding the scope of cell-surface displayable proteins to the realm of polymerases provides a novel screening tool for tailoring polymerases to diverse application demands in a polymerase chain reaction and sequencing-based biotechnological and medical applications. Especially, cell surface display enables novel polymerase screening strategies in which the heat-lysis step is bypassed and thus allows the screening of mesophilic polymerases with broad application potentials ranging from diagnostics and DNA sequencing to replication of synthetic genetic polymers.  相似文献   

6.
酶定向进化的研究进展   总被引:2,自引:0,他引:2  
定向进化在改造酶的性质方面已得到广泛应用,各种建立突变库的方法不断涌现。对新近发展的几种突变技术(如寡核苷酸设计型装配重组技术ADO、非序列同源蛋白重组SHIPREC等)进行了简要地介绍与分类。与突变技术相对应的筛选方法也在逐渐改变和完善,这里仅介绍高通量筛选方面的一些最新进展。  相似文献   

7.
8.
Guanosine 5′-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5′-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.  相似文献   

9.
10.
LST‐03 lipase from an organic solvent‐tolerant Pseudomonas aeruginosa LST‐03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent‐stability of LST‐03 lipase was attempted by directed evolution. The structural gene of the LST‐03 lipase was amplified by the error prone‐PCR method. Organic solvent‐stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri‐n‐butyrin and which overlaid a plate medium. And the organic solvent‐stability was also confirmed by measuring the half‐life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent‐stability in the presence of DMSO. The organic solvent‐stabilities of mutated LST‐03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half‐lives of the LST‐03‐R65 lipase in the presence of cyclohexane and n‐decane were about 9 to 11‐fold longer than those of the wild‐type lipase, respectively. Some substituted amino acid residues of mutated LST‐03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
异戊二烯是橡胶合成的重要前体物质。为了提高菌株的异戊二烯产量,本实验室在研究中构建了一株异戊二烯产气的菌株BW-01,基于蛋白质预算理论的指导,理性设计通过改变质粒拷贝数、增加稀有密码子等合成生物学手段调控关键限速酶编码基因表达,从而提高大肠杆菌外源MVA代谢途径的异戊二烯产量。摇瓶发酵实验中我们构建的新产气菌株BW-07比原有的产气菌株BW-01的产量提高了73%,达到了761.1 mg/L。为后续菌株改造及进行发酵罐实验奠定了基础。  相似文献   

12.
By directed evolution and subsequent site‐directed mutagenesis, cold‐adapted variants of WF146 protease, a thermophilic subtilase, have been successfully engineered. A four‐amino acid substitution variant RTN29 displayed a sixfold increase in caseinolytic activity in the temperature range of 15–25°C, a down‐shift of optimum temperature by ~15°C, as well as a decrease in thermostability, indicating it follows the general principle of trade‐off between activity and stability. Nevertheless, to some extent RTN29 remained its thermophilic nature, and no loss of activity was observed after heat‐treatment at 60°C for 2 h. Notably, RTN29 exhibited a lower hydrolytic activity toward suc‐AAPF‐pNA, due to an increase in Km and a decrease in kcat, in contrast to other artificially cold‐adapted subtilases with increased low‐temperature activity toward small synthetic substrates. All mutations (S100P, G108S, D114G, M137T, T153A, and S246N) identified in the cold‐adapted variants occurred within or near the substrate‐binding region. None of these mutations, however, match the corresponding sites in naturally psychrophilic and other artificially cold‐adapted subtilases, implying there are multiple routes to cold adaptation. Homology modeling and structural analysis demonstrated that these mutations led to an increase in mobility of substrate‐binding region and a modulation of substrate specificity, which seemed to account for the improvement of the enzyme's catalytic activity toward macromolecular substrates at lower temperatures. Our study may provide valuable information needed to develop enzymes coupling high stability and high low‐temperature activity, which are highly desired for industrial use. Biotechnol. Bioeng. 2009; 104: 862–870. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
14.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

15.
16.
17.
Expression of plasmid-encoded genes in bacteria is the most common strategy for the production of specific proteins in biotechnological processes. However, the synthesis of plasmid-encoded proteins and plasmid-DNA replication often places a metabolic load (metabolic burden) into the cell's biochemical capacities that usually reduces the growth rate of the producing culture (Glick BR. Biotechnol Adv 1995;13:247-261). This metabolic burden may be related to a limited capacity of the cell to supply the extra demand of building blocks and energy required to replicate plasmid DNA and express foreign multicopy genes. Some of these required blocks are intermediaries of the pentose phosphate (PP) pathway, e.g., ribose-5-phosphate, erythrose-4-phosphate. Due to the important impact of metabolic burden on biotechnological processes, several groups have worked on developing strategies to overcome this problem, like reduction of plasmid copy number (Seo JH, Bailey JE. Biotechnol Bioeng 1985;27:1668-1674; Jones KL, Kim S, Keasling JD. Metab Eng 2000;3:328-338), chromosomal insertion of the gene which product is desired, or changing the plasmid-coded antibiotic resistance gene (Hong Y, Pasternak JJ, Glick BR. Can J Microbiol 1995;41:624-628). However, few efforts have been attempted to overcome the reduction of growth rate due to protein over-expression, by modifying central metabolic pathways (Chou C-H, Bennett GN, San KY. Biotechnol Bioeng 1994;44:952-960). We constructed a high-copy number plasmid carrying the gene for glucose-6-phosphate dehydrogenase, zwf, under the control of an inducible trc promoter (pTRzwf04 plasmid). By transforming a wild-type strain and inducing with IPTG, it was possible to recover growth-rate from 0.46 h(-1) (uninduced) to 0.64 h(-1) (induced). The same transformation in an Escherichia coli zwf(-), allows a growth-rate recovery from 0.43 h(-1) (uninduced) to 0.62 h(-1) (induced). We also studied this effect as part of a laboratory-scale biotechnology process: production of a recombinant insulin peptide by co-transforming E. coli JM101 strain with pTRzwf07, a low-copy-number plasmid that carries the same inducible construction as pTRzwf04, and with the pTEXP-MMRPI vector that carries a TrpLE-proinsulin hybrid gene. In this system, production of TrpLE-proinsulin strongly reduces growth rate; however, overexpression of zwf gene recovers with a growth rate from 0.1 h(-1) in the TrpLE-proinsulin induced strain, to 0.37 h(-1) when both zwf and TrpLE-proinsulin genes were induced. In this paper, we show that the engineering of the pentose phosphate pathway by modulation of the zwf gene expression level partially overcomes the possible bottleneck for the supply of building blocks and reducing power synthesized through the PP pathway, that are required for plasmid replication and plasmid-encoded protein expression.  相似文献   

18.
19.
Directed evolution is a new process for developing industrially viable biocatalysts. This technique does not require a comprehensive knowledge of the relationships between sequence structure and function of proteins as required by protein engineering. It mimics the process of Darwinian evolution in a test tube combining random mutagenesis and recombination with screening or selection for enzyme variants that have the desired properties. Directed evolution helps in enhancing the enzyme performance both in natural and synthetic environments. This article reviews the process of directed evolution and its application to improve substrate specificity, activity, enantioselectivity and thermal stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号