首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, simple, facile, sensitive and enzyme‐amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co‐immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle‐based nanoprobes. This nanoprobe was employed in a sandwich‐type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP–luminol with H2O2. Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N = 3), which is much lower than that typically achieved with an enzyme‐linked immunosorbent assay (1:160; S/N = 3). A series of repeatability measurements using 1:320‐fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n = 11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme‐linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Two‐photon nonlinear microscopy with the aid of plasmonic contrast agents is an attractive bioimaging technique capable of generating high‐resolution images in 3 dimensions and facilitating targeted imaging with deep tissue penetration. In this work, physically synthesized gold nanoparticles containing multiple nanopores are used as 2‐photon contrast agents and are reported to emit a 20‐fold brighter 2‐photon luminescence as compared to typical contrast agents, that is, gold nanorods. A successful application of our porous gold nanoparticles is experimentally demonstrated by in vitro nonlinear optical imaging of adipocytes at subcellular level.   相似文献   

3.
4.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

5.
Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture‐based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu®) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine® sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture‐derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell‐derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM‐adsorbers were compared directly to column‐based Cellufine® sulfate and commercially available cation‐exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM‐capture step resulted in a higher reduction of dsDNA compared to the tested cation‐exchange membrane adsorbers. The productivity of the SCM‐based unit operation could be significantly improved by a 30‐fold increase in volumetric flow rate during adsorption compared to the bead‐based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell‐derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM‐adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine® sulfate. Biotechnol. Bioeng. 2009;103: 1144–1154. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY‐GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications.

Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY‐GNP (Middle) enable the differentiation between LY‐GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right).  相似文献   


7.
流感病毒是长期威胁人类健康最主要的病毒之一.灭活流感疫苗主要产生针对病毒血凝素的菌株特异性抗体,当新出现的流感病毒株与疫苗株不匹配时,疫苗的有效性将会大大降低.由于季节性流感病毒的抗原漂移和突变的持续出现,人们迫切地需要找到更广泛的保护方式.在以往的研究中,人们逐渐意识到细胞免疫的重要性,尤其是预先存在的记忆T细胞能靶...  相似文献   

8.
Dendrimer‐based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc‐FI‐FA), and dendrimer‐entrapped gold nanoparticles with similar modifications ([(Au0)51.2‐G5.NHAc‐FI‐FA]) in terms of their specific internalization to FA receptor (FAR)‐overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc‐FI‐FA and [(Au0)51.2‐G5.NHAc‐FI‐FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 936–942, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.  相似文献   

10.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


11.
A simple and ultrasensitive flow injection chemiluminescence competitive immunoassay based on gold nanoparticle‐loaded enzyme for the detection of chloramphenicol (CAP) residues in shrimp and honey has been developed. Due to their good biocompatibility and large specific surface area, carboxylic resin beads can be used as solid phase carriers to immobilize more coating antigens (Ag). In addition, gold nanoparticles could provide an effective matrix for loading more CAP antibody and horseradish peroxidase, which would effectively catalyze the system of luminol–p‐iodophenol (PIP)–H2O2. A competitive immunoassay strategy was used for detection of CAP, in which CAP in the sample would compete with the coating Ag for the limited antibodies, leading to a chemiluminescence (CL) signal decrease with increase in CAP concentration. A wide linear range 0.001–10 ng ml?1 (R2 = 0.9961) was obtained under optimized conditions, and the detection limit (3σ) was calculated to be 0.33 pg ml?1. This method was also been successfully applied to determine CAP in shrimp and honey samples. The immunosensor proposed in this study not only has the advantages of high sensitivity, wider linear range, and satisfactory stability, but also expands the application of flow injection CL immunoassay in antibiotic detection.  相似文献   

12.
禽流感是由正黏液病毒科甲型流感病毒引起的对人类健康和社会发展构成极大威胁的烈性传染病,高致病性禽流感暴发突然,具有极高的发病率和死亡率。目前具有确切疗效的抗禽流感治疗药物品种很少,公认的药物只有奥塞米韦,此外流感病毒的抗药性也是一个重要的问题,近年来出现的甲型H1N1病毒更给人类敲响了警钟,因此研究更多的治疗药物和治疗手段对于禽流感的防控十分必要。从禽流感治疗化学药物和生物药物几个方面对禽流感治疗研究进展进行了综述。  相似文献   

13.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

14.
ObjectivesUsing strategy of drug repurposing, antiviral agents against influenza A virus (IAV) and newly emerging SARS‐coronavirus 2 (SARS‐CoV‐2, also as 2019‐nCoV) could be quickly screened out.Materials and MethodsA previously reported engineered replication‐competent PR8 strain carrying luciferase reporter gene (IAV‐luc) and multiple pseudotyped IAV and SARS‐CoV‐2 virus was used. To specifically evaluate the pH change of vesicles containing IAV, we constructed an A549 cell line with endosomal and lysosomal expression of pHluorin2.ResultsHere, we identified azithromycin (AZ) as an effective inhibitor against multiple IAV and SARS‐CoV‐2 strains. We found that AZ treatment could potently inhibit IAV infection in vitro. Moreover, using pseudotyped virus model, AZ could also markedly block the entry of SARS‐CoV‐2 in HEK293T‐ACE2 and Caco2 cells. Mechanistic studies further revealed that such effect was independent of interferon signalling. AZ treatment neither impaired the binding and internalization of IAV virions, nor the viral replication, but rather inhibited the fusion between viral and vacuolar membranes. Using a NPC1‐pHluorin2 reporter cell line, we confirmed that AZ treatment could alkalize the vesicles containing IAV virions, thereby preventing pH‐dependent membrane fusion.ConclusionsOverall, our findings demonstrate that AZ can exert broad‐spectrum antiviral effects against IAV and SARS‐CoV‐2, and could be served as a potential clinical anti‐SARS‐CoV‐2 drug in emergency as well as a promising lead compound for the development of next‐generation anti‐IAV drugs.  相似文献   

15.
Drug and gene delivery using gold nanoparticles   总被引:2,自引:0,他引:2  
Monolayer-functionalized gold nanoparticles provide attractive vehicles for pharmaceutical delivery applications as a result of their size and the unique properties and release mechanisms imparted by their monolayer. This review provides examples of recent advances in the field of drug and gene delivery using gold nanoparticles.  相似文献   

16.
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system.  相似文献   

17.
18.
The interaction between protein and DNA is usually regulated by a third species, an effector, which can be either a protein or a small molecule. Convenient methods capable of detecting protein-DNA interaction and its regulation are highly desirable research tools. In the current study, we developed a method to directly “visualize” the interaction between a protein-DNA pair and its effector through the coupling with gold nanoparticles (AuNPs). As a proof-of-concept experiment, we constructed a model system based on the interaction between the lac repressor (protein) and operator (DNA) and its interplay with the lac operon inducer isopropyl β-d-1-thiogalactopyranoside (IPTG, which inhibits the interaction between the lac repressor and operator). We coated AuNPs with the lac operator sequences and mixed them with the lac repressor. Because the lac repressor homotetramer contains two DNA binding modules, it bridged the particles and caused them to aggregate. We demonstrated that the assembly of DNA-modified AuNPs correlated with the presence of the corresponding protein and effector in a concentration-dependent manner. This AuNP-based platform has the potential to be generalized in the creation of reporter and detection systems for other interacting protein-DNA pairs and their effectors.  相似文献   

19.
Based on the inhibition effect of methimazole (MMI) on the reaction of luminol–H2O2 catalyzed by gold nanoparticles, a novel chemiluminescence (CL) method was developed for the determination of MMI. Under the optimum conditions, the relative CL intensity was linearly related to MMI concentration in the range from 5.0 × 10?8 to 5.0 × 10?5 mol L?1. The detection limit was 1.6 × 10?8 mol L?1 (S/N = 3), and the RSD for 6.0 × 10?6 mol L?1 MMI was 4.83 (n = 11). This method has high sensitivity, wide linear range, inexpensive instrumentation and has been applied to detect MMI in pharmaceutical tablets and pig serum samples. Furthermore, a possible reaction mechanism is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号