首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Monoclonal antibodies (mAbs) have been well established as potent therapeutic agents and are used to treat many different diseases. During cell culture production, antibody charge variants can be generated by cleavage of heavy chain (HC) C‐terminal lysine and proline amidation. Differences in levels of charge variants during manufacturing process changes make it challenging to demonstrate process comparability. In order to reduce heterogeneity and achieve consistent product quality, we generated and expressed antibodies with deletion of either HC C‐terminal lysine (‐K) or lysine and glycine (‐GK). Interestingly, clones that express antibodies lacking HC C‐terminal lysine (‐K) had considerably lower specific productivities compared to clones that expressed either wild type antibodies (WT) or antibodies lacking HC glycine and lysine (‐GK). While no measurable differences in antibody HC and LC mRNA levels, glycosylation and secretion were observed, our analysis suggests that the lower specific productivity of clones expressing antibody lacking HC C‐terminal lysine was due to slower antibody HC synthesis and faster antibody degradation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:786–794, 2017  相似文献   

2.
The D ‐aldohexose dehydrogenase from the thermoacidophilic archaeon Thermoplasma acidophilum (AldT) is a homotetrameric enzyme that catalyzes the oxidation of several D ‐aldohexoses, especially D ‐mannose. AldT comprises a unique C‐terminal tail motif (residues 247–255) that shuts the active‐site pocket of the neighboring subunit. The functional role of the C‐terminal tail of AldT has been investigated using mutational and crystallographic analyses. A total of four C‐terminal deletion mutants (Δ254, Δ253, Δ252, and Δ249) and two site‐specific mutants (Y86G and P254G) were expressed by Escherichia coli and purified. Enzymatic characterization of these mutants revealed that the C‐terminal tail is a requisite and that the interaction between Tyr86 and Pro254 is critical for enzyme activity. The crystal structure of the Δ249 mutant was also determined. The structure showed that the active‐site loops undergo a significant conformational change, which leads to the structural deformation of the substrate‐binding pocket. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
The Fto gene locus has been linked to increased body weight and obesity in human population studies, but the role of the actual FTO protein in adiposity has remained controversial. Complete loss of FTO protein in mouse and of FTO function in human patients has multiple and variable effects. To determine which effects are due to the ability of FTO to demethylate mRNA, we genetically engineered a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO catalytic activity is not required for normal body composition although it is required for normal body size and viability. Strikingly, it is also essential for normal bone growth and mineralization, a previously unreported FTO function.  相似文献   

4.
Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.  相似文献   

5.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

6.
7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号