首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.  相似文献   

2.
Accurate chromosome segregation in mitosis is crucial to maintain a diploid chromosome number. A majority of cancer cells are aneuploid and chromosomally unstable, i.e. they tend to gain and lose chromosomes at each mitotic division. Chromosome mis-segregation can arise when cells progress through mitosis with mis-attached kinetochores. Merotelic kinetochore orientation, a type of mis-attachment in which a single kinetochore binds microtubules from two spindle poles rather than just one, can represent a particular threat for dividing cells, as: (i) it occurs frequently in early mitosis; (ii) it is not detected by the spindle assembly checkpoint (unlike other types of mis-attachments); (iii) it can lead to chromosome mis-segregation, and, hence, aneuploidy. A number of studies have recently started to unveil the cellular and molecular mechanisms involved in merotelic kinetochore formation and correction. Here, I review these studies and discuss the relevance of merotelic kinetochore orientation in cancer cell biology.  相似文献   

3.
In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anaphase in control or nocodazole-treated cells was found by confocal immunofluorescence microscopy to be a single chromatid with its kinetochore attached to kinetochore microtubule bundles extending toward opposite poles. This merotelic orientation was verified by electron microscopy. The single kinetochores of lagging chromosomes in anaphase were stretched laterally (1.2--5.6-fold) in the directions of their kinetochore microtubules, indicating that they were not able to achieve anaphase poleward movement because of pulling forces toward opposite poles. They also had inactivated mitotic spindle checkpoint activities since they did not label with either Mad2 or 3F3/2 antibodies. Thus, for mammalian cultured cells, kinetochore merotelic orientation is a major mechanism of aneuploidy not detected by the mitotic spindle checkpoint. The expanded and curved crescent morphology exhibited by kinetochores during nocodazole treatment may promote the high incidence of kinetochore merotelic orientation that occurs after nocodazole washout.  相似文献   

4.
Watanabe Y 《Cell》2006,126(6):1030-1032
Meiosis includes a reductional division in which homologous chromosomes, rather than sister chromatids, are segregated to opposite poles of the spindle. In this issue of Cell, report that casein kinase 1 contributes to this process by promoting the attachment of both kinetochores of a homolog to only one pole of the meiotic spindle in budding yeast.  相似文献   

5.
GJ Kops  JV Shah 《Chromosoma》2012,121(5):509-525
With the goal of creating two genetically identical daughter cells, cell division culminates in the equal segregation of sister chromatids. This phase of cell division is monitored by a cell cycle checkpoint known as the spindle assembly checkpoint (SAC). The SAC actively prevents chromosome segregation while one or more chromosomes, or more accurately kinetochores, remain unattached to the mitotic spindle. Such unattached kinetochores recruit SAC proteins to assemble a diffusible anaphase inhibitor. Kinetochores stop production of this inhibitor once microtubules (MTs) of the mitotic spindle are bound, but productive attachment of all kinetochores is required to satisfy the SAC, initiate anaphase, and exit from mitosis. Although mechanisms of kinetochore signaling and SAC inhibitor assembly and function have received the bulk of attention in the past two decades, recent work has focused on the principles of SAC silencing. Here, we review the mechanisms that silence SAC signaling at the kinetochore, and in particular, how attachment to spindle MTs and biorientation on the mitotic spindle may turn off inhibitor generation. Future challenges in this area are highlighted towards the goal of building a comprehensive molecular model of this process.  相似文献   

6.
Emanuele MJ  Stukenberg PT 《Cell》2007,130(5):893-905
For chromosomes to congress and segregate during cell division, kinetochores must form stable attachments with spindle microtubules. We find that the centrosome protein, xCep57, localizes to kinetochores and interacts with the kinetochore proteins Zwint, Mis12, and CLIP-170. Immunodepletion of xCep57 from egg extracts yields weakened and elongated bipolar spindles which fail to align chromosomes. In the absence of xCep57, tension is lost between sister kinetochores, and spindle microtubules are no longer resistant to low doses of nocodazole. xCep57 inhibition on isolated mitotic chromosomes inhibits kinetochore-microtubule binding in vitro. xCep57 also interacts with gamma-tubulin. In xCep57 immunodepleted extracts, sperm centrosomes nucleate with normal kinetics, but are unable maintain microtubule anchorage. This characterization places xCep57 in a novel class of proteins required for stable microtubule attachments at the kinetochore and at the centrosome and suggests that the mechanism of microtubule binding at these two places is mechanistically similar.  相似文献   

7.
Yokobayashi S  Watanabe Y 《Cell》2005,123(5):803-817
Meiosis resembles mitosis but employs a unique "reductional" nuclear division to allow the production of haploid gametes from diploid cells. The crucial ploidy reduction step requires that sister kinetochores attach to microtubules emanating from the same spindle pole, achieving "monopolar attachment," which ensures that maternal and paternal chromosomes are segregated. Here we screened for factors required to establish monopolar attachment in fission yeast and identified a novel protein, Moa1. Moa1 is meiosis specific and localizes exclusively to the central core of the centromere, a region that binds meiotic Rec8-containing cohesin complexes but not mitotic Rad21/Scc1-containing complexes. Enforced cleavage of Rec8 in the central core region led to the disruption of monopolar attachment, as in moa1Delta cells, without diminishing Moa1 localization. Moa1 physically interacts with Rec8, implying that Moa1 functions only through Rec8, presumably to facilitate central core cohesion. These results prove that monoorientation of kinetochores is established in a cohesion-mediated manner.  相似文献   

8.
Mitotic centromere-associated kinesin (MCAK) is a microtubule-depolymerizing kinesin-13 member that can track with polymerizing microtubule tips (hereafter referred to as tip tracking) during both interphase and mitosis. MCAK tracks with microtubule tips by binding to end-binding proteins (EBs) through the microtubule tip localization signal SKIP, which lies N terminal to MCAK's neck and motor domain. The functional significance of MCAK's tip-tracking behavior during mitosis has never been explained. In this paper, we identify and define a mitotic function specific to the microtubule tip-associated population of MCAK: negative regulation of microtubule length within the assembling bipolar spindle. This function depends on MCAK's ability to bind EBs and track with polymerizing nonkinetochore microtubule tips. Although this activity antagonizes centrosome separation during bipolarization, it ultimately benefits the dividing cell by promoting robust kinetochore attachments to the spindle microtubules.  相似文献   

9.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

10.
Cytoplasmic dynein is the only known kinetochore protein capable of driving chromosome movement toward spindle poles. In grasshopper spermatocytes, dynein immunofluorescence staining is bright at prometaphase kinetochores and dimmer at metaphase kinetochores. We have determined that these differences in staining intensity reflect differences in amounts of dynein associated with the kinetochore. Metaphase kinetochores regain bright dynein staining if they are detached from spindle microtubules by micromanipulation and kept detached for 10 min. We show that this increase in dynein staining is not caused by the retraction or unmasking of dynein upon detachment. Thus, dynein genuinely is a transient component of spermatocyte kinetochores.We further show that microtubule attachment, not tension, regulates dynein localization at kinetochores. Dynein binding is extremely sensitive to the presence of microtubules: fewer than half the normal number of kinetochore microtubules leads to the loss of most kinetochoric dynein. As a result, the bulk of the dynein leaves the kinetochore very early in mitosis, soon after the kinetochores begin to attach to microtubules. The possible functions of this dynein fraction are therefore limited to the initial attachment and movement of chromosomes and/or to a role in the mitotic checkpoint.  相似文献   

11.
Proper chromosome segregation in mitosis relies on correct kinetochore-microtubule (KT-MT) interactions. The KT initially interacts with the lateral surface of a single MT (lateral attachment) extending from a spindle pole and is subsequently anchored at the plus end of the MT (end-on attachment). The conversion from lateral to end-on attachment is crucial because end-on attachment is more robust and thought to be necessary to sustain KT-MT attachment when tension is applied across sister KTs upon their biorientation. The mechanism for this conversion is still elusive. The Ndc80 complex is an essential component of the KT-MT interface, and here we studied a role of the Ndc80 loop region, a distinct motif looping out from the coiled-coil shaft of the complex, in Saccharomyces cerevisiae. With deletions or mutations of the loop region, the lateral KT-MT attachment occurred normally; however, subsequent conversion to end-on attachment was defective, leading to failure in sister KT biorientation. The Ndc80 loop region was required for Ndc80-Dam1 interaction and KT loading of the Dam1 complex, which in turn supported KT tethering to the dynamic MT plus end. The Ndc80 loop region, therefore, has an important role in the conversion from lateral to end-on attachment, a crucial maturation step of KT-MT interaction.  相似文献   

12.
The spindle assembly checkpoint links the onset of anaphase to completion of chromosome-microtubule attachment and is mediated by the binding of Mad and Bub proteins to kinetochores of unattached or maloriented chromosomes. Mad2 and BubR1 traffic between kinetochores and the cytosol, thereby transmitting a "wait anaphase" signal to the anaphase-promoting complex. It is generally assumed that this signal dissipates automatically upon kinetochore-microtubule binding, but it has been shown that under conditions of nocodazole-induced arrest p31(comet), a Mad2-binding protein, is required for mitotic progression. In this article we investigate the localization and function of p31(comet) during normal, unperturbed mitosis in human and marsupial cells. We find that, like Mad2, p31(comet) traffics on and off kinetochores and is also present in the cytosol. Cells depleted of p31(comet) arrest in metaphase with mature bipolar kinetochore-microtubule attachments, a satisfied checkpoint, and high cyclin B levels. Thus p31(comet) is required for timely mitotic exit. We propose that p31(comet) is an essential component of the machinery that silences the checkpoint during each cell cycle.  相似文献   

13.
14.
We have previously identified the opium alkaloid noscapine as a microtubule interacting agent that binds stoichiometrically to tubulin and alters its conformation. Here we show that, unlike many other microtubule inhibitors, noscapine does not significantly promote or inhibit microtubule polymerization. Instead, it alters the steady-state dynamics of microtubule assembly, primarily by increasing the amount of time that the microtubules spend in an attenuated (pause) state. Further studies reveal that even at high concentrations, noscapine does not alter the tubulin polymer/monomer ratio in HeLa cells. Cells treated with noscapine arrest at mitosis with nearly normal bipolar spindles. Strikingly, although most of the chromosomes in these cells are aligned at the metaphase plate, the rest remain near the spindle poles, both of which exhibit loss of tension across kinetochore pairs. Furthermore, levels of the spindle checkpoint proteins Mad2, Bub1, and BubR1 decrease by 138-, 3.7-, and 3.9-fold, respectively, at the kinetochore region upon chromosome alignment. Our results thus suggest that an exquisite control of microtubule dynamics is required for kinetochore tension generation and chromosome alignment during mitosis. Our data also support the idea that Mad2 and Bub1/BubR1 respond to kinetochore-microtubule attachment and/or tension to different degrees.  相似文献   

15.
16.
A major goal in the study of vertebrate mitosis is to identify proteins that create the kinetochore-microtubule attachment site. Attachment sites within the kinetochore outer plate generate microtubule dependent forces for chromosome movement and regulate spindle checkpoint protein assembly at the kinetochore. The Ndc80 complex, comprised of Ndc80 (Hec1), Nuf2, Spc24, and Spc25, is essential for metaphase chromosome alignment and anaphase chromosome segregation. It has also been suggested to have roles in kinetochore microtubule formation, production of kinetochore tension, and the spindle checkpoint. Here we show that Nuf2 and Hec1 localize throughout the outer plate, and not the corona, of the vertebrate kinetochore. They are part of a stable "core" region whose assembly dynamics are distinct from other outer domain spindle checkpoint and motor proteins. Furthermore, Nuf2 and Hec1 are required for formation and/or maintenance of the outer plate structure itself. Fluorescence light microscopy, live cell imaging, and electron microscopy provide quantitative data demonstrating that Nuf2 and Hec1 are essential for normal kinetochore microtubule attachment. Our results indicate that Nuf2 and Hec1 are required for organization of stable microtubule plus-end binding sites in the outer plate that are needed for the sustained poleward forces required for biorientation at kinetochores.  相似文献   

17.
The interruption of feeding of an arthropod vector can have important consequences for the transmission of blood parasites. In this article, Clive Davies explains the causes of feeding interruptions and how they are estimated, so as to assess the consequences to the fitness of a vector and the transmission success of its parasites.  相似文献   

18.
19.
Krude T 《Current biology : CB》2002,12(7):R256-R258
An unexpected new role for the chromatin assembly factor CAF-1 and the histone-regulating Hir proteins has been discovered in budding yeast. Both protein complexes are required together for building functional kinetochores.  相似文献   

20.
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the anaphase-promoting complex, or cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important for the understanding of how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator CDC20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated CDC20 remain 'locked' onto the APC/C, which prevents the ubiquitylation and degradation of cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of CDC20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号