首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EVI5 has been shown to be a novel centrosomal protein in interphase cells. In this report, we demonstrate using immunofluorescence microscopy that EVI5 has a dynamic distribution during mitosis, being associated with the mitotic spindle through anaphase and remaining within the midzone and midbody until completion of cytokinesis. Knockdown of EVI5 using siRNA results in a multinucleate phenotype, which is consistent with an essential role for this protein in the completion of cytokinesis. The EVI5 protein also undergoes posttranslational modifications during the cell cycle, which involve phosphorylation in early mitosis and proteolytic cleavage during late mitosis and cytokinesis. Since the subcellular distribution of the EVI5 protein was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis, we used immunoprecipitation and GST pull-down approaches to demonstrate that EVI5 is associated with the aurora B kinase protein complex (INCENP, aurora B kinase and survivin). Together, these data provide evidence that EVI5 is an essential component of the protein machinery facilitating the final stages of cell septation at the end of mitosis.  相似文献   

2.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.  相似文献   

3.
Two of the most fundamental processes in plant development are cytokinesis, by which new cells are formed, and cell expansion, by which existing cells grow and establish their functional morphology. In this review we summarize recent progress in understanding the pathways necessary for cytokinesis and cell expansion, including the role of the cytoskeleton, cell wall biogenesis, and membrane trafficking. Here, we focus on genes and lipids that are involved in both cytokinesis and cell expansion and bridge the divide between these two processes. In addition, we discuss our understanding of and controversies surrounding the role of endocytosis in both of these processes.  相似文献   

4.
Cytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity.  相似文献   

5.
The ultimate goal of all signaling pathways in cytokinesis is to control the mechanical separation of the mother cell into two daughter cells. Because of the intrinsic mechanical nature of cytokinesis, it is essential to understand fully how cell shapes and the material properties of the cell are generated, how these shapes and material properties create force, and how motor proteins such as myosin-II modify the system to achieve successful cytokinesis. In this review (which is part of the Cytokinesis series), we discuss the relevant physical properties of cells, how these properties are measured and the basic models that are used to understand cell mechanics. Finally, we present our current understanding of how cytokinesis mechanics work.  相似文献   

6.
Animal cell division is believed to be mediated primarily by the 'purse-string' mechanism, which entails furrowing of the equatorial region, driven by the interaction of actin and myosin II filaments within contractile rings. However, myosin II-null Dictyostelium cells on substrates divide efficiently in a cell cycle-coupled manner. This process, termed cytokinesis B, appears to be driven by polar traction forces. Data in the literature can be interpreted as suggesting that adherent higher animal cells also use a cytokinesis B-like mechanism for cytokinesis. An additional chemotaxis-based cytokinesis that involves a 'midwife' cell has also been reported. Collectively, these findings demonstrate an unexpected diversity of mechanisms by which animal cells carry out cytokinesis.  相似文献   

7.
The role of membrane traffic during cell division has only recently begun to be investigated. A growing number of trafficking proteins seem to be involved in the successful completion of cytokinesis. Clathrin was the first trafficking protein to be shown to be essential for cytokinesis in Dictyostelium. Here we investigate the nature of the cytokinesis defect of Dictyostelium clathrin null cells. We found that adherent clathrin null cells do form cleavage furrows but cannot maintain a consistent rate of furrow ingression. Clathrin null cells are completely defective in cytokinesis when placed in suspension. In these conditions, the cells develop an abnormal division morphology that consists of two lateral "furrows" on either side of a bulging equatorial region. Cells expressing GFP-myosin II were examined at various stages of cytokinesis. Clathrin null cells show multiple defects in myosin organization and localization that parallel the striking failure in furrow morphology. We postulate that this morphology is the result of contraction at the rear of the presumptive daughter cells in concert with incomplete furrow ingression.  相似文献   

8.
Plant cytokinesis requires an orchestrated interplay of membrane and cytoskeleton dynamics, which results in the formation of the membrane that partitions the cytoplasm of the dividing cell. Until recently, phragmoplast-assisted cytokinesis of somatic cells was regarded as mechanistically different from 'non-conventional' modes of cytokinesis, such as endosperm cellularisation or male meiotic cytokinesis. However, features that are similar among these diverse modes of cytokinesis have now been revealed by electron tomography, suggesting common underlying mechanisms that are also supported by genetic and molecular studies. Further insight into the complex process of cytokinesis has been gained from the identification of new components and from the analysis of known components.  相似文献   

9.
Dividing animal and plant cells maintain a constant chromosome content through temporally separated rounds of replication and segregation. Until recently, the mechanisms by which animal and plant cells maintain a constant surface area have been considered to be distinct. The prevailing view was that surface area was maintained in dividing animal cells through temporally separated rounds of membrane expansion and membrane invagination. The latter event, known as cytokinesis, produces two physically distinct daughter cells and has been thought to be primarily driven by actomyosin-based constriction. By contrast, membrane addition seems to be the primary mechanism that drives cytokinesis in plants and, thus, the two events are linked mechanistically and temporally. In this article (which is part of the Cytokinesis series), we discuss recent studies of a variety of organisms that have made a convincing case for membrane trafficking at the cleavage furrow being a key component of both animal and plant cytokinesis.  相似文献   

10.
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.  相似文献   

11.
Cytokinesis in Eukaryotes   总被引:14,自引:1,他引:13       下载免费PDF全文
Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.  相似文献   

12.
Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.  相似文献   

13.
Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1-3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C.?elegans germline and in preimplantation mouse embryos. In the absence of hemicentin, cleavage furrows form but retract prior to completion, resulting in multinucleate cells. In addition to their role in tissue organization, the data indicate that hemicentins are the first secreted proteins required during mammalian development and the only known secreted proteins required for cytokinesis, with an evolutionarily conserved role in stabilizing and preventing retraction of nascent cleavage furrows. Together with studies showing that extracellular polysaccharides are required for cytokinesis in diverse species [4-9], our data suggest that assembly of a cell type-specific extracellular matrix may be a general requirement for cleavage furrow maturation and contractile ring function during cytokinesis.  相似文献   

14.
Cell line which is temperature-sensitive for cytokinesis   总被引:7,自引:0,他引:7  
We have isolated several cell lines which are temperature-sensitive for growth. One of these appears to be temperature-sensitive for cytokinesis. It was isolated from a Syrian hamster cell line by selecting cells which were not killed by 1 μg/ml cytosine arabinoside at 39° but which grew normally at 31°. It shows an increased proportion of binucleate cells when shifted to the non-permissive temperature and time-lapse photomicroscopy shows that a high proportion of attempted mitoses fail at 39°, apparently at the stage of cytokinesis. The cells which have failed to complete mitosis reattach to the plate and have two normal-size nuclei but otherwise behave normally.  相似文献   

15.
BACKGROUND: Cell division or cytokinesis, which results from a series of events starting in metaphase, is the mechanism by which the mother cell cytoplasm is divided between the two daughter cells. Hence it is the final step of the cell division cycle. The aim of the present study was to demonstrate that mammalian cells undergoing cytokinesis can be sorted selectively by flow cytometry. MATERIALS AND METHODS: Cultures of HeLa cells were arrested in prometaphase by nocodazole, collected by mitotic shake-off and released for 90 min into fresh medium to enrich for cells undergoing cytokinesis. After ethanol fixation and DNA staining, cells were sorted based on DNA content and DNA fluorescence signal height. RESULTS: We define a cell population that transiently accumulates when synchronized cells exit mitosis before their entry into G1. We show that this population is highly enriched in cells undergoing cytokinesis. In addition, this population of cells can be sorted and analyzed by immunofluorescence and western blotting. CONCLUSIONS: This method of cell synchronization and sorting provides a simple means to isolate and biochemically analyze cells in cytokinesis, a period of the cell cycle that has been difficult to study by cell fractionation.  相似文献   

16.
The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  相似文献   

17.
The ECT2 protooncogene plays a critical role in cytokinesis, and its C-terminal half encodes a Dbl homology-pleckstrin homology module, which catalyzes guanine nucleotide exchange on the Rho family of small GTPases. The N-terminal half of ECT2 (ECT2-N) contains domains related to the cell cycle regulator/checkpoint control proteins including human XRCC1, budding yeast CLB6, and fission yeast Cut5. The Cut5-related domain consists of two BRCT repeats, which are widespread to repair/checkpoint control proteins. ECT2 is ubiquitously expressed in various tissues and cell lines, but elevated levels of ECT2 expression were found in various tumor cell lines and rapidly developing tissues in mouse embryos. Consistent with these findings, induction of ECT2 expression was observed upon stimulation by serum or various growth factors. In contrast to other oncogenes whose expression is induced early in G1, ECT2 expression was induced later, coinciding with the initiation of DNA synthesis. To test the role of the cell cycle regulator/checkpoint control protein-related domains of ECT2 in cytokinesis, we expressed various ECT2 derivatives in U2OS cells, and analyzed their DNA content by flow cytometry. Expression of the N-terminal half of ECT2, which lacks the catalytic domain, generated cells with more than 4N DNA content, suggesting that cytokinesis was inhibited in these cells. Interestingly, ECT2-N lacking the nuclear localization signals inhibited cytokinesis more strongly than the derivatives containing these signals. Mutational analyses revealed that the XRCC1, CLB6, and BRCT domains in ECT2-N are all essential for the cytokinesis inhibition by ECT2-N. These results suggest that the XRCC1, CLB6, and BRCT domains of ECT2 play a critical role in regulating cytokinesis.  相似文献   

18.
Cytokinesis ensures proper partitioning of the nucleocytoplasmic contents into two daughter cells. It has generally been thought that cytokinesis is accomplished differently in animals and plants because of the differences in the preparatory phases, into the centrosomal or acentrosomal nature of the process, the presence or absence of rigid cell walls, and on the basis of 'outside-in' or 'inside-out' mechanism. However, this long-standing paradigm needs further reevaluation based on new findings. Recent advances reveal that plant cells, similarly to animal cells, possess astral microtubules that regulate the cell division plane. Furthermore, endocytosis has been found to be important for cytokinesis in animal and plant cells: vesicles containing endocytosed cargo provide material for the cell plate formation in plants and for closure of the midbody channel in animals. Thus, although the preparatory phases of the cell division process differ between plant and animal cells, the later phases show similarities. We unify these findings in a model that suggests a conserved mode of cytokinesis.  相似文献   

19.
We have identified mutations in six previously uncharacterized genes of Arabidopsis, named club, bublina, massue, rod, bloated, and bims, that are required for cytokinesis. The mutants are seedling lethal, have morphological abnormalities, and are characterized by cell wall stubs, gapped walls, and multinucleate cells. In these and other respects, the new mutants are phenotypically similar to knolle, keule, hinkel, and pleiade mutants. The mutants display a gradient of stomatal phenotypes, correlating roughly with the severity of their cytokinesis defect. Similarly, the extent to which the different mutant lines were capable of growing in tissue culture correlated well with the severity of the cytokinesis defect. Phenotypic analysis of the novel and previously characterized loci indicated that the secondary consequences of a primary defect in cytokinesis include anomalies in body organization, organ number, and cellular differentiation, as well as organ fusions and perturbations of the nuclear cycle. Two of the 10 loci are required for both cytokinesis and root hair morphogenesis. The results have implications for the identification of novel cytokinesis genes and highlight the mechanistic similarity between cytokinesis and root hair morphogenesis, two processes that result in a rapid deposition of new cell walls via polarized secretion.  相似文献   

20.
For many years, cytokinesis in eukaryotic cells was considered to be a process that took a variety of forms. This is rather surprising in the face of an apparently conservative mitosis. Animal cytokinesis was described as a process based on an actomyosin-based contractile ring, assembling, and acting at the cell periphery. In contrast, cytokinesis of plant cells was viewed as the centrifugal generation of a new cell wall by fusion of Golgi apparatus-derived vesicles. However, recent advances in animal and plant cell biology have revealed that many features formerly considered as plant-specific are, in fact, valid also for cytokinetic animal cells. For example, vesicular trafficking has turned out to be important not only for plant but also for animal cytokinesis. Moreover, the terminal phase of animal cytokinesis based on midbody microtubule activity resembles plant cytokinesis in that interdigitating microtubules play a decisive role in the recruitment of cytokinetic vesicles and directing them towards the cytokinetic spaces which need to be plugged by fusing endosomes. Presently, we are approaching another turning point which brings cytokinesis in plant and animal cells even closer. As an unexpected twist, new studies reveal that both plant and animal cytokinesis is driven not so much by Golgi-derived vesicles but rather by homotypically and heterotypically fusing endosomes. These are generated from cytokinetic cortical sites defined by preprophase microtubules and contractile actomyosin ring, which induce local endocytosis of both the plasma membrane and cell wall material. Finally, plant and animal cytokinesis meet together at the physical separation of daughter cells despite obvious differences in their preparatory events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号