首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
E Schneider  S Hunke    S Tebbe 《Journal of bacteriology》1995,177(18):5364-5367
The ATP-hydrolyzing subunit MalK of the ATP-binding cassette transporter for maltose of Escherichia coli is demonstrated to be accessible to digestion by proteinase K in right-side-out membrane vesicles. This finding suggests a partial transmembrane orientation of the protein.  相似文献   

6.
The mal regulon of Escherichia coli comprises a large family of genes whose function is the metabolism of linear maltooligosaccharides. Five gene products are required for the active accumulation of maltodextrins as large as maltoheptaose. Two cytoplasmic gene products are necessary and sufficient for the intracellular catabolism of these sugars. Two newly discovered enzymes have the capacity to metabolize these sugars but are not essential for their catabolism in wild-type cells. A single regulatory protein, MalT, positively regulates the expression of all of these genes in response to intracellular inducers, one of which has been identified as maltotriose. In the course of studying the mechanism of the transport system, we have placed the structural gene for one of the transport proteins, MalK, under the control of the Ptrc promoter to produce large amounts of this protein. We found that although high-level expression of MalK was not detrimental to E. coli, the increased amount of MalK decreased the basal-level expression of the mal regulon and prevented induction of the mal system even in the presence of external maltooligosaccharides. Constitutive mutants in which MalT does not depend on the presence of the internal inducer(s) were unaffected by the increased levels of the MalK protein. These results are consistent with the idea that MalK protein somehow interferes with the activity of the MalT protein. Different models for the regulatory function of MalK are discussed.  相似文献   

7.
8.
The maltose transport complex (MTC) is a member of the ATP-binding cassette superfamily of membrane transport proteins and is a model for understanding the folding and assembly of hetero-oligomeric membrane protein complexes. The MTC is made up of two integral membrane proteins, MalF and MalG, and a peripheral membrane protein, MalK. These proteins associate with a stoichiometry of 1:1:2 to form the complex MalFGK2. In our studies of the oligomerization of this complex, we have shown that the ATP-binding component, MalK, forms a dimer in the absence of MalF and MalG. Epitope-tagged MalK coimmunoprecipitated with wild-type MalK, indicating that the MalK protein forms an oligomer. The relative amounts of tagged and wild-type MalK that were present in the whole cell extracts and in the immunoprecipitated complexes show that the MalK oligomer is a dimer. These hetero-oligomers can also be formed in vitro by mixing two extracts, each containing either tagged or wild-type MalK. The dimerization of MalK was also demonstrated in vivo using the bacteriophage lambda repressor fusion assay. The formation of a MalK dimer in the absence of MalF and MalG may represent an initial step in the assembly pathway of the MTC.  相似文献   

9.
10.
Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits.  相似文献   

11.
The maltose regulon consists of three operons controlled by a positive regulatory gene, malT. Deletions of the gene crp were introduced into strains which carried a malT-lacZ hybrid gene. From the observed reduction in beta-galactosidase activity it was concluded that the expression of malT-lacZ, and therefore of malT, is controlled by the catabolite activator protein (CAP), the product of the gene crp. Mutations were obtained which allowed a malT-lacZ hybrid gene to be expressed at a high level even in the absence of CAP. These mutations were shown to be located in or close to the promoter of the malT gene and were called malTp. The malTp mutations were transferred in the cis position to a wild-type malT gene. In the resulting strains, the expression of two of the maltose operons, malEFG and malK-lamB, still required the action of CAP, whereas that of the third operon, malPQ, was CAP independent. Therefore, in wild-type cells, CAP appears to control malPQ expression mainly, if not solely, by regulating the concentration of MalT protein in the cell. On the other hand, it controls the other two operons more stringently, both by regulating malT expression and by a more direct action, probably exerted in the promoters of these operons.  相似文献   

12.
13.
The nucleotide binding domains (NBDs) are the energy supplying subunits of ATP-binding cassette (ABC) proteins. They power transport by binding and hydrolyzing ATP. Tracing the pathway between different conformational states of the NBDs during ATP binding, hydrolysis, and release has, however, proven difficult. We have used molecular dynamics simulations to study the ATP-driven association of the NBDs of the maltose ABC transporter, MalK, based on the crystal structures of its open and semiopen dimers. When MgATP was introduced into the binding pockets, the semiopen dimer transitioned to a closed conformation, whereas the open dimer evolved to a semiopen state. In the absence of docked MgATP, however, the twin NBDs of both the open and semiopen starting configurations drifted further apart. Both the presence of MgATP and direct cross-interface protein-protein hydrogen bonds, primarily involving the D-loop, quite likely play a key role in initiating closure. The simulations of the MgATP-docked semiopen form indicate that completion of closure is driven mainly by cross-interface contacts between the gamma-phosphate of ATP and residues in the signature motif. Our simulations also give insight into possible interactions of MalK with the regulatory proteins MalT and enzyme IIA(glc).  相似文献   

14.
The maltose transport system of Escherichia coli, a member of the ABC transport superfamily of proteins, consists of a periplasmic maltose binding protein and a membrane-associated translocation complex that contains two copies of the ATP-binding protein MalK. To examine the need for two nucleotide-binding domains in this transport complex, one of the two MalK subunits was inactivated by site-directed mutagenesis. Complexes with mutations in a single subunit were obtained by attaching a polyhistidine tag to the mutagenized version of MalK and by coexpressing both wild-type MalK and mutant (His)6MalK in the same cell. Hybrid complexes containing one mutant (His)6MalK subunit and one wild-type MalK subunit were separated from those containing two mutant (His)6MalK proteins based on differential affinities for a metal chelate column. Purified transport complexes were reconstituted into proteoliposome vesicles and assayed for maltose transport and ATPase activities. When a conserved lysine residue at position 42 that is involved in ATP binding was replaced with asparagine in both MalK subunits, maltose transport and ATPase activities were reduced to 1% of those of the wild type. When the mutation was present in only one of the two subunits, the complex had 6% of the wild-type activities. Replacement of a conserved histidine residue at position 192 in MalK with arginine generated similar results. It is clear from these results that two functional MalK proteins are required for transport activity and that the two nucleotide-binding domains do not function independently to catalyze transport.  相似文献   

15.
Osmoregulation of the maltose regulon in Escherichia coli.   总被引:17,自引:14,他引:3       下载免费PDF全文
B Bukau  M Ehrmann    W Boos 《Journal of bacteriology》1986,166(3):884-891
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present.  相似文献   

16.
The Escherichia coli ATP-binding cassette (ABC) proteins   总被引:7,自引:1,他引:7  
The recent completion of the Escherichia coli genome sequence ( Blattner et al ., 1997 ) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E . coli . These 79 proteins include 97 ABC domains (as some proteins include more than one ABC domain) and are components of 69 independent functional systems (as many systems involve more than one ABC domain). The ABC domains are often, but not exclusively, the energy-generating domains of multicomponent membrane-bound transporters. Thus, 57 of the 69 systems are ABC transporters, of which 44 are periplasmic-binding protein-dependent uptake systems and 13 are presumed exporters. The genes encoding these ABC transporters occupy almost 5% of the genome. Of the 12 systems that are not obviously transport related, the function of only one, the excision repair protein UvrA, is known. A phylogenetic analysis suggests that the majority of ABC proteins can be assigned to 10 subfamilies. Together with statistical and, importantly, biological evidence, this analysis provides insight into the evolution and function of the ABC proteins.  相似文献   

17.
18.
We have studied cofactor-induced conformational changes of the maltose ATP-binding cassette transporter by employing limited proteolysis in detergent solution. The transport complex consists of one copy each of the transmembrane subunits, MalF and MalG, and of two copies of the nucleotide-binding subunit, MalK. Transport activity further requires the periplasmic maltose-binding protein, MalE. Binding of ATP to the MalK subunits increased the susceptibility of two tryptic cleavage sites in the periplasmic loops P2 of MalF and P1 of MalG, respectively. Lys(262) of MalF and Arg(73) of MalG were identified as probable cleavage sites, resulting in two N-terminal peptide fragments of 29 and 8 kDa, respectively. Trapping the complex in the transition state by vanadate further stabilized the fragments. In contrast, the tryptic cleavage profile of MalK remained largely unchanged. ATP-induced conformational changes of MalF-P2 and MalG-P1 were supported by fluorescence spectroscopy of complex variants labeled with 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. The results suggest that complex variants exhibiting a binding protein-independent phenotype (MalF500) or containing a mutation that affects the "catalytic carboxylate" (MalKE159Q) reside in a transition state-like conformation. A similar conclusion was drawn for a complex containing a replacement of MalKQ140 in the signature sequence by leucine, whereas substitution of lysine for Gln(140) appears to lock the transport complex in the ground state. Together, our data provide the first evidence for conformational changes of the transmembrane subunits of an ATP-binding cassette import system upon binding of ATP.  相似文献   

19.
20.
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 degrees C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 micromol Pi/min/mg and a Km of 330 microM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号