首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of deltatigdeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C deltatigdeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of deltatigdeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/= 60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.  相似文献   

2.
Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of DeltatigDeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C DeltatigDeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of DeltatigDeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/=60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.  相似文献   

3.
Optimal conditions for two-dimensional gel electrophoresis of total cellular proteins from Myxococcus xanthus were established. Using these conditions, we analyzed protein patterns of heat-shocked M. xanthus cells. Eighteen major spots and 15 minor spots were found to be induced by heat shock. From N-terminal sequences of 15 major spots, DnaK, GroEL, GroES, alkyl hydroperoxide reductase, aldehyde dehydrogenase, succinyl coenzyme A (CoA) synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit were identified. Three of the 18 major spots had an identical N-terminal sequence, indicating that they may be different forms of the same protein. Although a DnaK homologue, SglK, has been identified in M. xanthus (R. M. Weimer, C. Creghton, A. Stassinopoulos, P. Youderian, and P. L. Hartzell, J. Bacteriol. 180:5357-5368, 1998; Z. Yang, Y. Geng, and W. Shi, J. Bacteriol. 180:218-224, 1998), SglK was not induced by heat shock. In addition, there were seven substitutions within the N-terminal 30-residue sequence of the newly identified DnaK. This is the first report to demonstrate that succinyl CoA synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit are heat shock inducible.  相似文献   

4.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

5.
On the basis of acquired thermotolerance and cryotolerance, the optimal heat shock and cold shock temperatures have been determined for Deinococcus radiodurans. A heat shock at 42°C maximized survival at the lethal temperature of 52°C and a cold shock at 20°C maximized survival after repeated freeze-thawing. Enhanced survival from heat shock was found to be strongly dependent on growth stage, with its greatest effect shortly after phase. Increased synthesis of a total of 67 proteins during heat shock and 42 proteins during cold shock were observed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and autoradiography. Eight of the most highly induced heat shock proteins shown by 2D PAGE were identified by MALDI-MS as Hsp20, GroEL, DnaK, SodA, Csp, Protease I and two proteins of unknown function.  相似文献   

6.
7.
AIMS: The aim of this study was to optimize survival of Lactobacillus delbrueckii subsp. bulgaricus during spray-drying and subsequent storage through optimizing the pH of growth conditions. METHODS AND RESULTS: Cell concentrates previously grown without or with pH controlled were spray-dried and stored at 20 degrees C and heat treated at 57 degrees C. Cells grown under noncontrolled pH were more resistant to both drying and heating than cells grown under controlled pH but no significant differences were observed during storage. The intracellular proteins profile of cells grown under both conditions was studied by two-dimensional SDS-polyacrylamide gel electrophoresis. Eight proteins were identified using automated mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data acquisition. Of the identified proteins, only cochaperonin GroES corresponded to a known heat shock protein (HSP). The other proteins identified are proteins involved in glycolysis. For cells grown under noncontrolled pH the expression of the Hsp70, GroES and GroEL, measured by Western blotting, was enhanced. CONCLUSIONS: The higher resistance of cells grown under noncontrolled pH correlates with the enhanced production of heat shock proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of L. bulgaricus under controlled pH (commonly used by the starter cultures production industry) results in cells more sensitive to stresses frequently encountered by the cells during starter cultures preparation/storage/utilization.  相似文献   

8.
Heat shock proteins (HSPs) of the Hsp70 and GroEL families associate with a variety of cell proteins in vivo. However, the formation of such complexes has not been systematically studied. A 31-kDa fusion protein (CRAG), which contains 12 residues of cro repressor, truncated protein A, and 14 residues of beta-galactosidase, when expressed in Escherichia coli, was found in complexes with DnaK, GrpE, protease La, and GroEL. When an E. coli extract not containing CRAG was applied to an affinity column containing CRAG, DnaK, GroEL, and GrpE were selectively bound. These HSPs did not bind to a normal protein A column. DnaK, GrpE, and the fraction of GroEL could be eluted from the CRAG column with ATP but not with a nonhydrolyzable ATP analog. The ATP-dependent release of DnaK and GroEL also required Mg2+, but GrpE dissociated with ATP alone. The binding and release of DnaK and GroEL were independent events, but the binding of GrpE required DnaK. Inactivation of DnaJ, GrpE, and GroES did not affect the association or dissociation of DnaK or GroEL from CRAG. The DnaK and GrpE proteins could be eluted with 10(-6) M ATP, but 10(-4) M was required for GroEL release. This approach allows a one-step purification of these proteins from E. coli and also the isolation of the DnaK and GroEL homologs from yeast mitochondria. Competition experiments with oligopeptide fragments of CRAG showed that DnaK and GroEL interact with different sites on CRAG and that the cro-derived domain of CRAG contains the DnaK-binding site.  相似文献   

9.
Heat shock inBacillus subtilis may induce as many as 66 proteins after temperature upshift from 37° to 48°C. Four induced proteins were analyzed by microsequencing techniques. These were identified as the homologues for GroEL, DnaK, enolase, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which are heat shock proteins in other systems. The identities of GroEL and DnaK were confirmed additionally by Western blot analysis. As a control, a protein whose synthesis was repressed approximately threefold by heat shock was identified by microsequencing as flagellin.  相似文献   

10.
Sequence analysis of the Legionella micdadei groELS operon   总被引:4,自引:0,他引:4  
A 2.7 kb DNA fragment encoding the 60 kDa common antigen (CA) and a 13 kDa protein of Legionella micdadei was sequenced. Two open reading frames of 57,677 and 10,456 Da were identified, corresponding to the heat shock proteins GroEL and GroES, respectively. Typical -35, -10, and Shine-Dalgarno heat shock expression signals were identified upstream of the L. micdadei groEL gene. Further upstream, a poly-T region, also a feature of the sigma 32-regulated Escherichia coli groELS heat shock operon, was found. Despite the high degree of homology of the expression signals in E. coli and L. micdadei, Western blot analysis with an L. micdadei specific anti-groEL antibody did not reveal a significant increase in the amount of the GroEL protein during heat shock in L. micdadei or in the recombinant E. coli expressing L. micdadei GroEL.  相似文献   

11.
Liu X  Huang W  Li M  Wu Q 《IUBMB life》2005,57(6):449-454
Two small heat shock proteins (sHsps), Hsp17.8 and Hsp17.1, were identified in the cyanobacterium Anabaena sp. PCC 7120. Recombinant Hsp17.8 and Hsp17.1 were overexpressed in Escherichia coli and characterized here. Hsp17.8 was purified by sequential chromatography on DEAE-Sepharose and Superose 6 10/300 column, and Hsp17.1 was purified by Superose 6 10/300 column in 4M urea. Size exclusion chromatography demonstrated that both purified proteins form large oligomers approximately 420kDa and 410kDa, respectively. Both Hsp17.8 and Hsp17.1 showed chaperone-like activity to protect citrate synthase (CS) from thermal aggregation at 43 degrees C. Furthermore, both proteins were found to form complexes with denatured CS at 45 degrees C. Our study also demonstrated that despite a high degree of sequence homology and similar subunit size, Hsp17.1 showed higher hydrophobicity indicated by 8-anilino-1-naphthalene sulfonate fluorescence and thus greater chaperone-like activity. This is the first report of characterization and comparison of an sHsp system containing two chaperones in cyanobacteria.  相似文献   

12.
Caulobacter crescentus cells respond to a sudden increase in temperature by transiently inducing the synthesis of several polypeptides. Two of the proteins induced, Hsp62 and Hsp70, were shown to be analogous to the heat shock proteins of Escherichia coli, GroEL and DnaK, respectively, by immunological cross-reactivity with antibodies raised against the E. coli proteins. Two-dimensional gel electrophoretic resolution of extracts of cells labeled with [35S]methionine during heat shock led to the identification of 20 distinct Hsps in C. crescentus which are coordinately expressed, in response to heat, at the various stages of the cell division cycle. Thus, a developmental control does not seem to be superimposed on the transient activation of the heat shock genes. Nonetheless, under normal temperature conditions, four Hsps (Hsp70, Hsp62, Hsp24b, and Hsp23a) were shown to be synthesized, and their synthesis was cell cycle regulated.  相似文献   

13.
A survey of the heat shock response was carried out in a series of streptomycetes. Four major heat shock proteins (HSPs) were observed in each of four species (Streptomyces albus, S. lividans, S. parvulus, S. viridochromogenes) after pulse labeling with [35S]methionine and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three corresponded to the major procaryotic HSPs Lon, DnaK, and GroEL on the basis of their apparent molecular masses (94 to 100, 70, and 56 to 58 kDa, respectively). In addition, a smaller protein (16 to 18 kDa) was detected in all species but was most dramatically induced in S. albus. Consequently, studies focused on this species. As in other procaryotic systems, thermal induction (elicited by a shift from 30 degrees C to 41 degrees C) of the 70- and 94-kDa proteins was transient and expression returned to uninduced levels after 60 min. In contrast, the 56- to 58-kDa (GroEL) and 18-kDa proteins (HSP18) remained induced for more than 2 h. Two-dimensional gel electrophoresis allowed resolution of at least eight S. albus HSPs. HSP56-58 was composed of multiple acidic protein species, whereas HSP18 appeared to be basic. In spite of these differences in their physical characteristics, the N-terminal peptide sequence of HSP18 was similar to those of GroEL-like proteins found in other organisms and identical to one of the HSP56-58 species. In fact, N-terminal amino acid analysis of the S. albus 56- to 58-kDa species showed that it was composed of two proteins that differed in 3 of 10 positions, an observation that was supported by the detection of two groEL-like genes by Southern hybridization. The amino acid sequence of one of these proteins was identical to that of HSP18. Pulse-chase experiments did not reveal evidence of posttranslational processing of either HSP56-58 or HSP18.  相似文献   

14.
Exposure of L. acidophilus CRL 639 cells to sublethal adaptive acid conditions (pH 5.0 for 60 min) was found to confer protection against subsequent exposure to lethal pH (pH 3.0). Adaptation, which only occurred in complex media, was dependent on de novo protein synthesis and was inhibited by amino acid analogues. There was no modification in the protein synthesis rate during adaptation, but the protein degradation rate decreased. Synthesis of acid stress proteins may increase the stability of pre-existing proteins. By 2D-PAGE, induction of nine acid stress proteins and repression of several housekeeping proteins was observed. Putative heat shock proteins DnaK, DnaJ, GrpE, GroES and GroEL (70, 43, 24, 10 and 55 kDa, respectively) were among the proteins whose synthesis was induced in response to acid adaptation.  相似文献   

15.
16.
The molecular chaperones are a group of proteins that are effective in vitro and in vivo folding aids and show a well-documented affinity for proteins lacking tertiary structure. The molecular chaperones were induced from lon(-) Escherichia coli mutants, affinity purified with an immobilized beta-casein column, and assayed for refolding activity with thermally and chemically denatured carbonic anhydrase B (CAB). Chaperones were induced with three treatments: heat shock at 39 degrees C, heat shock 42 degrees C, and alcohol shock with 3% ethanol (v/v). Lysates were applied to an immobilized beta-casein (30 mg/g beads) column. After removing nonspecifically bound proteins with 1 M NaCl, the molecular chaperones were eluted with cold water or 1 mM Mg-ATP. The cold water and Mg-ATP eluates were analyzed by SDS-PAGE. Western analysis identified five E. coli molecular chaperones including DnaK, DnaJ, GrpE, GroEL, and GroES. The purity of eluted chaperones was 58% with cold water and 100% with Mg-ATP. Refolding denatured CAB in the presence of Mg-ATP resulted in a 97% recovery of heat-denatured CAB and a 68% recovery of chemically denatured CAB. The use of affinity matrices for the chaperone purification which are effective as in vitro folding aids will be presented.  相似文献   

17.
Pseudomonas putida (NBAII-RPF9) was identified as an abiotic stress tolerant bacterium capable of growing at 45 °C as well as in 1 M NaCl. The proteins expressed by this bacterium when subjected to these two stresses were analyzed by 2D gel and MALDI-TOF/MS. Two parameters viz., heat/saline shock (20 min at 45 °C/1 M solid NaCl added at mid log phase and incubated for 1 h) and heat/saline tolerance (24 h growth at 45 °C/in 1 M NaCl) were studied. Under heat shock 13 upregulated proteins and 1 downregulated protein were identified and under tolerance 6 upregulated proteins were identified. GroES and GroEL proteins were expressed under both tolerance and shock. Under saline shock 11 upregulated proteins were identified whereas under saline tolerance 6 upregulated proteins were identified and all these proteins had pI between 3 and 10 with molecular weights ranging from 14.3 to 97 kDa. Aspartate carbamoyltransferase was common under both the saline conditions studied. The analysis revealed involvement of heat stress responsive molecular chaperones and membrane proteins during heat stress. During salt stress, proteins involved in metabolic processes were found to be upregulated to favor growth and adaptation of the bacterium. Heat shock chaperones viz., DnaK and DnaJ were expressed under both saline and heat stress. This is the first report of protein profile obtained from a single bacterium under saline and heat stress and the studies reveal the complex mechanisms adapted by the organism to survive under high temperature or saline conditions.  相似文献   

18.
The GroEL/GroES chaperonin system mediates protein folding in the bacterial cytosol. Newly synthesized proteins reach GroEL via transfer from upstream chaperones such as DnaK/DnaJ (Hsp70). Here we employed single molecule and ensemble FRET to monitor the conformational transitions of a model substrate as it proceeds along this chaperone pathway. We find that DnaK/DnaJ stabilizes the protein in collapsed states that fold exceedingly slowly. Transfer to GroEL results in unfolding, with a fraction of molecules reaching locally highly expanded conformations. ATP-induced domain movements in GroEL cause transient further unfolding and rapid mobilization of protein segments with moderate hydrophobicity, allowing partial compaction on the GroEL surface. The more hydrophobic regions are released upon subsequent protein encapsulation in the central GroEL cavity by GroES, completing compaction and allowing rapid folding. Segmental chain release and compaction may be important in avoiding misfolding by proteins that fail to fold efficiently through spontaneous hydrophobic collapse.  相似文献   

19.
20.
We have characterized the heat-shock response of the nosocomial pathogen Enterococcus faecium. The growth of E. faecium cells was analyzed at different temperatures; little growth was observed at 50 degrees C, and no growth at 52 degrees C or 55 degrees C. In agreement, a marked decrease of general protein synthesis was observed at 52 degrees C, and very light synthesis was detected at 55 degrees C. The heat resistance of E. faecium cells was analyzed by measuring the survival at temperatures higher than 52 degrees C and, after 2 h of incubation, viable cells were still observed at 70 degrees C. By Western blot analysis, two heat-induced proteins were identified as GroEL (65 kDa) and DnaK (75 kDa). Only one isoform for either GroEL or DnaK was found. The gene expression of these heat-shock proteins was also analyzed by pulsed-labeled experiments. The heat-induced proteins showed an increased rate of synthesis during the first 5 min, reaching the highest level of induction after 10 min and returning to the steady-state level after 20 min of heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号