首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the reaction of RhCl3·3H2O with acetonitrile normally produces mixtures of mer- and fac-[RhCl3(CH3CN)3] (1a and 1b, respectively). The IR and 1H NMR spectra of these isomers were re-investigated. Their two-dimensional (103Rh,1H) NMR spectra were also recorded. Equilibrium and exchange studies of 1a and 1b in CD3C were performed. It was found that in 1a the exchange rate of the nitrile molecule trans to Cl is much faster than those of mutually trans nitriles. Also the nitrile molecules in 1b underwent fast exchange in CD3CN; however, their rate was slightly faster than that of the more labile CH3CN in 1a. The X-ray crystal structure of mer-[RhCl3(CH3CN)3]·CH3CN (1c) was determined. Crystal data: triclinic space group .  相似文献   

2.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

3.
A series of cuboidal iron-sulfur clusters [Fe4S3(NO)4(PR3)3]0,1+ (R = Et, Pri, Cy) were synthesized by two routes: reductive desulfurization of [Fe4S4(NO)4] by tertiary phosphines, and substitution of triphenylphosphine in [Fe44S3(NO)4(PPh3)3] by a more basic phosphine. The structures of 3[Fe4S3(NO)4(PEt3)3] · 0.5Et2O, [Fe4S3(NO)4(PEt3)3] [Fe4S3(NO)7] and partially substituted [Fe4S3(NO)4(PPh3)2 (PPri3)] have been determined by X-ray diffraction in order to define the cuboidal Fe4S3 core, previously known only in Roussin's black anion and its reduced form, [Fe4S3(NO)77]1−,2−, and as a part of the iron-molybdenum cofactor of nitrogenase.  相似文献   

4.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

5.
The labile cations [Cu(F-BF3)(PCy3)2] and [Cu(OTf)(PCy3)2] are versatile precursors for the formation of [Cu(X)(PCy3)2] (X = Br, I, SCN, N3) complexes by metathesis with NaX. The azide [Cu(N3)(PCy3)2] is triclinic, space group , a = 9.755(4), B = 22.78(1), C = 9.284(6) Å, = 96.76(3), β = 115.36(3), γ = 94.20(5)°, Z = 2.  相似文献   

6.
Two novel tetracopper(I) and tetrasilver(I) complexes [Cu4(atdz)6](ClO4)4·2CH3OH (1) and [Ag4(atdz)6](ClO4)4 (2), have been prepared using 2-amino-1,3,4-thiadiazole (atdz), and their crystal structures and properties have been determined. On each tetranuclear complex, two Cu or Ag atoms (M) are bridged by two atdz ligands to form a six-membered N2M2N2 framework. The two N2M2N2 frameworks are in parallel linked by another atdz ligand to provide the tetranuclear structure with a rectangular M4 core. The four Cu or Ag atoms possess a trigonal-square geometry. The two adjacent MM separations are (3.096(1) and 3.412(1) Å) and (3.316(2) and 3.658(2) Å) for 1 and 2, respectively. On both tetranuclear complexes there are two species of hydrogen bonds between the ClO4 − anions and the NH2 group of atdz ligands. It is proposed that the hydrogen bonds are related to the stabilization of the tetranuclear structure during the crystallization process.  相似文献   

7.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

8.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

9.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

10.
A novel five-coordinate rhenium(III)-thiolato complex, Re(SCH2C6H4OCH3-p)3(PPh3)2 has been isolated during the reaction of trans-ReOCl3(PPh3)2 with p-methoxybenzyl mercaptan. In the unexpected structure that was acquired, the central metal has undergone a reduction from Re(V) to Re(III). The five-coordinate Re(III) complex has been characterized by spectroscopic methods, elemental analysis and X-ray crystallography. X-ray crystallographic studies showed the coordination geometry around rhenium to be that of a trigonal bipyramid. The basal plane is defined by three sulfur atoms of the monodentate ligand, while the two apical positions are occupied by two phosphines of the precursor.  相似文献   

11.
Dark-brown single crystals of the title compound 1 were obtained in high yield by layering a CuCl2 solution in 25% aqueous ammonia on a glycerol solution of K6[W4Te4(CN)12]·5H2O. The complex 1 was characterized by single crystal X-ray diffraction analysis and IR spectroscopy. The X-ray structure of 1 reveals a polymeric chain cyano-bridged cluster-metal coordination compound. The [W4Te4(CN)12]6− cluster anions are linked one to another by Cu2+ cations through coordination by nitrogen atoms of the CN groups.  相似文献   

12.
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers.  相似文献   

13.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

14.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

15.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

16.
Two new rhenium(IV) mononuclear compounds of formula NBu4[ReBr4(OCN)(DMF)] (1) and (NBu4)2[ReBr(OCN)2(NCO)3] (2) (NBu4 = tetrabutylammonium cation, OCN = O-bonded cyanate anion, NCO = N-bonded cyanate anion and DMF = N,N-dimethylformamide) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic system with the space group P21/n, whereas 2 crystallizes in the triclinic one with as space group. In both complexes the rhenium atom is six-coordinated, in 1 by four Br atoms in the equatorial plane, and two trans-oxygen atoms, one of a DMF molecule and another one from a cyanato group, while in 2 by one bromide anion and five cyanate ligands, two of which are O-bonded and three N-bonded, forming a somewhat distorted octahedral surrounding. Magnetic susceptibility measurements on polycrystalline samples of 1 and 2 in the temperature range 1.9-300 K are interpreted in terms of magnetically isolated spin quartets with large values of the zero-field splitting (|2D| is ca. 41.6 and 39.2 cm−1 for 1 and 2, respectively).  相似文献   

17.
Two ruthenium(II) complexes with polypyridyl, Ru(bipy)2(phen)](ClO4)2·H2O (1) and [Ru(bipy)2(Me-phen)](ClO4)2 (2), (phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, Me-phen = 5-methyl-1,10-phenanthroline), were synthesized and characterized by IR, MS and NMR spectra. Their structures were determined by single crystal X-ray diffraction techniques. The strong steric interaction between the polypyridyl ligands was relieved neither by the elongation of the Ru---N bonds nor increase of the N---Ru---N bite angles. The coordination sphere was distorted to relieve the ligand interaction by forming specific angles (δ) between the polypyridyl ligand planes and coordination planes (N---Ru---N), and forming larger twisted angles between the two pyridine rings for each bipy. The bond distances of Ru---N(bipy) and Ru---N(phen) were virtually identical with experimental error, as expected of π back-bonding interactions which statistically involve each of the ligands present in the coordination sphere.  相似文献   

18.
Two new heterometallic complexes, [Cu(en)(H2O)]2[Fe(CN)6]·4H2O (1) and [Cu(en)2][KFe(CN)6] (2), have been isolated from the reactions of CuCl2 and en with K3[Fe(CN)6] in different molar ratios. Both complexes have been characterized by X-ray analyses, IR spectra and elemental analyses. Complex 1 is a cyanide bridged bimetallic assembly, its crystal structure consists of a two-dimensional polymeric sheet with two different rings, one a four-membered square ring and another a 12-membered hexagonal ring. The Fe(II) ion of 1 has two terminal, two linear bridging and two 1,1 en-on bridging cyanide groups. In the crystal structure of 2, the neighboring [Fe(CN)6]3− units are bridged by the K+ and the [K[Fe(CN)6]]2− units forming a three-dimensional network structure. The [Cu(en)2]2+ units fill in the holes of the network acting as counter cations and charge compensations. Variable temperature magnetic susceptibility studies of 1 indicate that the complex exhibits ferromagnetic interaction between the Cu(II) ions.  相似文献   

19.
The bis(2-methoxyethyl)dithiocarbamate complexes [M{S2CN(CH2CH2OMe)2}2] (M = Ni, Cu, Zn, Pd) are readily prepared and the three lighter complexes have been crystallographically characterised. Disproportionation of [Cu{S2CN(CH2CH2OMe)2}2] upon addition of Cu(ClO4)2 · 6H2O affords the copper(III) complex [Cu{S2CN(CH2CH2OMe)2}2][ClO4] which has also been crystallographically characterised. Unlike other copper(III) dithiocarbamate salts, there are no intermolecular cation-cation or cation-anion interactions.  相似文献   

20.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号