首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Payne JC  Rous BW  Tenderholt AL  Godwin HA 《Biochemistry》2003,42(48):14214-14224
Zinc binding to the two Cys(4) sites present in the DNA-binding domain (DBD) of nuclear hormone receptor proteins is required for proper folding of the domain and for protein activity. By utilizing Co(2+) as a spectroscopic probe, we have characterized the metal-binding properties of the two Cys(4) structural zinc-binding sites found in the DBD of human estrogen receptor alpha (hERalpha-DBD) and rat glucocorticoid receptor (GR-DBD). The binding affinity of Co(2+) to the two proteins was determined relative to the binding affinity of Co(2+) to the zinc finger consensus peptide, CP-1. Using the known dissociation constant of Co(2+) from CP-1, the dissociation constants of cobalt from hERalpha-DBD were calculated: K(d1)(Co) = 2.2 (+/- 1.0) x 10(-7) M and K(d2)(Co) = 6.1 (+/- 1.5) x 10(-7) M. Similarly, the dissociation constants of Co(2+) from GR-DBD were calculated: K(d1)(Co) = 4.1 (+/- 0.6) x 10(-7) M and K(d2)(Co) = 1.7 (+/- 0.3) x 10(-7) M. Metal-binding studies conducted in which Zn(2+) displaces Co(2+) from the metal-binding sites of hERalpha-DBD and GR-DBD indicate that Zn(2+) binds to each of the Cys(4) metal-binding sites approximately 3 orders of magnitude more tightly than Co(2+) does: the stoichiometric dissociation constants are K(d1)(Zn) = 1 (+/- 1) x 10(-10) M and K(d2)(Zn) = 5 (+/- 1) x 10(-10) M for hERalpha-DBD and K(d1)(Zn) = 2 (+/- 1) x 10(-10) M and K(d2)(Zn) = 3 (+/- 1) x 10(-10) M for GR-DBD. These affinities are comparable to those observed for most other naturally occurring structural zinc-binding sites. In contrast to the recent prediction by Low et. al. that zinc binding in these systems should be cooperative [Low, L. Y., Hernández, H., Robinson, C. V., O'Brien, R., Grossmann, J. G., Ladbury, J. E., and Luisi, B. (2002) J. Mol. Biol. 319, 87-106], these data suggest that the zincs that bind to the two sites in the DBDs of hERalpha-DBD and GR-DBD do not interact.  相似文献   

2.
Estimates of the number of zinc proteins in humans are now possible and a functional annotation of the zinc proteome can begin. The catalytic and structural roles of zinc in hundreds of enzymes and thousands of so-called "zinc finger" protein domains have provided a molecular basis for the numerous biological functions of this essential element. Additional, regulatory functions of zinc/protein interactions are being recognized. They include roles of the zinc ion in signal transduction, in controlling the architecture of protein complexes, and in redox-active zinc sites, where the binding and release of zinc is under redox control. Moreover, a considerable number of proteins participate in cellular zinc homeostasis, e.g. membrane transporters, and cellular storage, sensor, and trafficking proteins. These proteins have evolved with mechanisms to handle zinc ions rather specifically and selectively. They perform their functions with a remarkably modest set: One redox state of the zinc ion and nitrogen, oxygen, and sulfur ligands from the side chains of histidine, glutamate/aspartate, and cysteine, respectively. By permutation of the ligands in this set, the functional potential of the zinc ion has been fully explored. Different coordination environments modulate the chemical characteristics of the zinc ion, control the kinetics of its binding, and allow it to be either metabolically active or inert. Insights into all these functions are building an understanding of why zinc is so critical for such a multitude of life processes.  相似文献   

3.
The structure of the nuclear hormone receptors.   总被引:18,自引:0,他引:18  
R Kumar  E B Thompson 《Steroids》1999,64(5):310-319
  相似文献   

4.
5.
The amyloid beta-peptide (Abeta) is a principal component of insoluble amyloid plaques which are characteristic neuropathological features of Alzheimer's disease. Abeta also exists as a normal soluble protein that undergoes a pathogenic transition to an aggregated, fibrous form. This transition can be affected by extraneous proteinaceous and nonproteinaceous elements, such as zinc ions, which may promote aggregation and/or stabilization of the fibrils. Protein chelation of zinc is typically mediated by histidines, cysteines and carboxylates. Previous studies have demonstrated that the Abeta-Zn2+ binding site is localized within residues 6-28 and that histidines may serve as the principal sites of interaction. To localize key residues within this region, a series of Abeta peptides (residues 1-28) were synthesized that contained systematic His/Ala substitutions. Circular dichroism and electron microscopy were used to monitor the effects of Zn2+ on the peptide beta-sheet conformation and fibril aggregation. Our results indicate that substitution of either His13 or His14 but not His6 eliminates the zinc-mediated effects. These observations indicate a specific zinc binding site within Abeta that involves these central histidine residues.  相似文献   

6.
Characterization of the zinc binding site of bacterial phosphotriesterase.   总被引:5,自引:0,他引:5  
The bacterial phosphotriesterase has been found to require a divalent cation for enzymatic activity. This enzyme catalyzes the detoxification of organophosphorus insecticides and nerve agents. In an Escherichia coli expression system significantly higher concentrations of active enzyme could be produced when 1.0 mM concentrations of Mn2+, Co2+, Ni2+, and Cd2+ were included in the growth medium. The isolated enzymes contained up to 2 equivalents of these metal ions as determined by atomic absorption spectroscopy. The catalytic activity of the various metal enzyme derivatives was lost upon incubation with EDTA, 1,10-phenanthroline, and 8-hydroxyquinoline-5-sulfonic acid. Protection against inactivation by metal chelation was afforded by the binding of competitive inhibitors, suggesting that at least one metal is at or near the active site. Apoenzyme was prepared by incubation of the phosphotriesterase with beta-mercaptoethanol and EDTA for 2 days. Full recovery of enzymatic activity could be obtained by incubation of the apoenzyme with 2 equivalents of Zn2+, Co2+, Ni2+, Cd2+, or Mn2+. The 113Cd NMR spectrum of enzyme containing 2 equivalents of 113Cd2+ showed two resonances at 120 and 215 ppm downfield from Cd(ClO4)2. The NMR data are consistent with nitrogen (histidine) and oxygen ligands to the metal centers.  相似文献   

7.
8.
Thyroid hormone receptors, isolated from rat liver nuclei, bind to purified DNA. By contrast, free triiodothyronine and plasma proteins which bind thyroid hormone do not associate with DNA. Thus, the nuclear localization of thyroid hormone in target tissues may be explained by the association of its receptors with DNA.  相似文献   

9.
P2X receptors are ATP-gated ion channels made up of three similar or identical subunits. It is unknown whether ligand binding is intersubunit or intrasubunit, either for agonists or for allosteric modulators. Zinc binds to rat P2X2 receptors and acts as an allosteric modulator, potentiating channel opening. To probe the location of this zinc binding site, P2X2 receptors bearing mutations of the histidines at positions 120 and 213 were expressed in Xenopus oocytes. Studies of H120C and H213C mutants produced five lines of evidence consistent with the hypothesis that the residues in these positions bind zinc. Mixing of subunits containing the H120A or H213A mutation generated receptors that showed zinc potentiation, even though neither of these mutant receptors showed zinc potentiation on its own. Furthermore, expression of trimeric concatamers with His --> Ala mutations at some but not all six positions showed that zinc potentiation correlated with the number of intersubunit histidine pairs. These results indicate that zinc potentiation requires an interaction across a subunit interface. Expression of the H120C/H213C double mutant resulted in the formation of ectopic disulfide bonds that could be detected by changes in the physiological properties of the receptors after treatment with reducing and oxidizing agents. Immunoblot analysis of H120C/H213C protein separated under nonreducing conditions demonstrated that the ectopic bonds were between adjacent subunits. Taken together, these data indicate that His120 and His213 sit close to each other across the interface between subunits and are likely to be key components of the zinc binding site in P2X2 receptors.  相似文献   

10.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

11.
Zinc stabilizes the SecB binding site of SecA   总被引:1,自引:0,他引:1  
The molecular chaperone SecB targets preproteins to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA recognizes SecB via its carboxyl-terminal 22 aminoacyl residues, a highly conserved domain that contains 3 cysteines and 1 histidine residue that could potentially be involved in the coordination of a metal ion. Treatment of SecA with a zinc chelator resulted in a loss of the stimulatory effect of SecB on the SecA translocation ATPase activity, while the activity could be restored by the addition of ZnCl2. Interaction of SecB with the SecB binding domain of SecA is disrupted by chelators of divalent cations, and could be restored by the addition of Cu2+ or Zn2+. Atomic absorption and electrospray mass spectrometry revealed the presence of one zinc atom per monomeric carboxyl terminus of SecA. It is concluded that the SecB binding domain of SecA is stabilized by a zinc ion that promotes the functional binding of SecB to SecA.  相似文献   

12.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

13.
The photolabile peptide, L-methionyl-L-tyrosyl-p-azido-L-phenylalaninamide, was synthesized by solution methods. This peptide, as well as the analogous species containing tritiated methionine, were found to bind reversibly and specifically, in the dark, to bovine neurophysin II. The dissociation constant, stoichiometry, and pH-dependence of this noncovalent interaction are typical of those properties for hormone (oxytocin) and hormone-like ligand binding to neurophysin II. Under photolytic conditions, methionyl-tyrosyl-p-azidophenylalaninamide causes irreversible inhibition of the noncovalent ligand binding activity of neurophysin II. This inactivation was achieved to the extent of about 90%. Both the dark and light (photolytic) interactions of the photolabile peptide with neurophysin II indicate its reaction at the hormone binding site of the protein and thus its potential use to identify amino acid residues at this site by covalent photoaffinity labelling.  相似文献   

14.
Site directed mutagenesis of the rat ovarian luteinizing hormone (LH) receptor cDNA was performed at each of the six potential N-linked glycosylation sites to determine the effect of putative carbohydrate chains on the activity of the membrane receptor. The conversion of Asn173 to Gln resulted in the total loss of hormone binding to the surface of the transfected cell. Mutant receptors synthesized with substitutions at the remaining potential N-linked glycosylation positions of 77, 152, 269, 277 and 291 revealed no significant change in the hormone affinity. However Asn77Gln and Asn152Gln exhibited significant decreases (approximately 80%) in the number of high affinity hormone binding sites. The changes in hormone binding activity upon elimination of the potential glycosylation sites at 77, 152 and 173 indicate the presence of functional carbohydrate chains at these positions in the rat ovarian LH/hCG receptor.  相似文献   

15.
The tertiary structure of thyroxine binding globulin (TBG) has been modelled on the basis of its close homology to alpha 1-antitrypsin, the archetype of the serine protease inhibitor (serpin) superfamily. Energy minimization was applied to the model to refine the structure further. The putative thyroid hormone binding region suggested in previous labelling studies was found to exist within a beta-barrel structure of complementary dimensions to the thyroid hormones. The model also revealed that the binding cleft provides the hydrophobic environment and specific ionic interaction sites deemed important for thyroid hormone binding. The model is in good agreement with evidence derived from previously reported T3 and T4 binding, stability and isoelectric focussing studies of TBG and TBG variants. Finally, T4 analogue and drug binding studies have enabled us to postulate the orientation and manner of hormone binding to TBG. This may prove to be of assistance in the development of potent and specific, non-thyroidal ligands and also aid in the understanding of physiological thyroid hormone binding interactions.  相似文献   

16.
The (2S,4R)- and (2S,4S)-4-hydroxyglutamates activate cloned mGlu(1a), mGlu(2), and mGlu(8a) receptors with different potencies. Best results were obtained with the (2S,4S) isomer being almost as potent as glutamate on mGlu(1a)R and mGlu(8a)R. Data are interpreted on the basis of the binding site model and X-ray structure.  相似文献   

17.
Protein kinase C (PKC) isozymes comprise a family of cytosolic enzymes that translocate to different intracellular sites on activation. We have recently characterized at least two intracellular receptor proteins for PKC (termed RACKs for receptors for activated C-kinase) in the Triton-insoluble material of the particulate fraction from neonatal rat heart. Here, we identify a sequence that appears to resemble the PKC binding site on these RACKs. A peptide (peptide I) with the sequence KGDYEKILVALCGGN bound PKC, and binding was markedly increased in the presence of PKC activators. Furthermore, peptide I inhibited PKC binding to RACKs in a dose-dependent manner. These data suggest that these RACKs have a common PKC binding sequence. Since peptide I inhibited PKC binding to RACKs in vitro, it may be a useful tool to inhibit PKC translocation and subsequent function in vivo.  相似文献   

18.
19.
The nuclear hormone receptor DNA-binding domain consists of two zinc finger-like modules whose amino acids are highly conserved among the members of the receptor superfamily. In this review, we describe the various genetic, biochemical, and structural experiments that have been carried out primarily for the DNA-binding domains of the glucocorticoid and estrogen receptors. We describe how the structural and functional information have permitted us to predict properties of the DNA-binding domains of other nuclear receptors. We postulate how receptors discriminate closely related response elements through sequence-specific contacts and distinguish symmetry of target sites through protein-protein interactions. This mechanism explains in part how the receptors regulate diverse sets of genes from a limited repertoire of core response elements. Lastly, we describe the stereochemical basis of nuclear receptor dysfunction in certain clinical disorders. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号