首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin-linked kinase (ILK) is a serine-threonine kinase and scaffold protein with well defined roles in focal adhesions in integrin-mediated cell adhesion, spreading, migration, and signaling. Using mass spectrometry-based proteomic approaches, we identify centrosomal and mitotic spindle proteins as interactors of ILK. alpha- and beta-tubulin, ch-TOG (XMAP215), and RUVBL1 associate with ILK and colocalize with it to mitotic centrosomes. Inhibition of ILK activity or expression induces profound apoptosis-independent defects in the organization of the mitotic spindle and DNA segregation. ILK fails to localize to the centrosomes of abnormal spindles in RUVBL1-depleted cells. Additionally, depletion of ILK expression or inhibition of its activity inhibits Aurora A-TACC3/ch-TOG interactions, which are essential for spindle pole organization and mitosis. These data demonstrate a critical and unexpected function for ILK in the organization of centrosomal protein complexes during mitotic spindle assembly and DNA segregation.  相似文献   

2.
D Hirata  H Masuda  M Eddison    T Toda 《The EMBO journal》1998,17(3):658-666
The main structural components of microtubules are alpha- and beta-tubulins. A group of proteins called cofactors are crucial in the formation of assembly-competent tubulin molecules in vitro. Whilst an in vitro role is emerging for these cofactors, their biological functions in vivo remain to be established. In order to understand the fundamental mechanisms that determine cell polarity, we have screened for fission yeast mutants with altered polarity. Here we show that alp1+ encodes a homologue of cofactor D and executes a function essential for cell viability. A temperature-sensitive alp1 mutant shows a variety of defects including abnormal mitoses, loss of microtubule structures, displacement of the nucleus, altered growth polarity and asymmetrical cell division. Overexpression of Alp1 is lethal in wild-type cells, resulting in altered cell shape, but is rescued by co-overexpression of beta-tubulin. Alp1 co-localizes with microtubules, both interphase arrays and mitotic spindles. Furthermore, Alp1 binds to and co-sediments with taxol (paclitaxel)-stabilized porcine microtubules. Our results suggest that, in addition to a function in the folding of beta-tubulin, cofactor D may play a vital role in microtubule-dependent processes as a microtubule-associated protein.  相似文献   

3.
The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation. Interestingly, however, spindles can still form in the absence of centrosomes calling into question the specific mitotic role of these organelles. Recent work has shown that the human centrosomal protein, Cep192, is required for both centrosome maturation and spindle assembly thus providing a molecular link between these two processes. In this article, we propose that Cep192 does so by forming a scaffolding on which proteins involved in microtubule nucleation are sequestered and become active in mitotic cells. Normally, this activity is largely confined to centrosomes but in their absence continues to function but is dispersed to other sites within the cell.  相似文献   

4.
Chlamydiae are Gram negative, obligate intracellular bacteria, and Chlamydia trachomatis is the etiologic agent of the most commonly reported sexually transmitted disease in the United States. Chlamydiae undergo a biphasic life cycle that takes place inside a parasitophorous vacuole termed an inclusion. Chlamydial infections have been epidemiologically linked to cervical cancer in patients previously infected by human papillomavirus (HPV). The inclusion associates very closely with host cell centrosomes, and this association is dependent upon the host motor protein dynein. We have previously reported that this interaction induces supernumerary centrosomes in infected cells, leading to multipolar mitotic spindles and inhibiting accurate chromosome segregation. Our findings demonstrate that chlamydial infection causes mitotic spindle defects independently of its effects on centrosome amplification. We show that chlamydial infection increases centrosome spread and inhibits the spindle assembly checkpoint delay to disrupt centrosome clustering. These data suggest that chlamydial infection exacerbates the consequences of centrosome amplification by inhibiting the cells' ability to suppress the effects of these defects on mitotic spindle organization. We hypothesize that these combined effects on mitotic spindle architecture identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation.  相似文献   

5.
The present studies were designed to assess the roles of progesterone (P4) and Progesterone Receptor Membrane Component 1 (PGRMC1) in regulating mitosis of spontaneously immortalized granulosa cells (SIGCs) and ovarian cancer cells, SKOV-3 cells. Because PGRMC1 has been detected among the proteins of the human mitotic spindle, we theorized that P4 and PGRMC1 could affect mitosis through a microtubule-dependent process. The present study confirms that SIGC growth is slowed by either P4 treatment or transfection of a PGRMC1 antibody. In both cases, slower cell proliferation was accompanied by an increased percentage of mitotic cells, which is consistent with a P4-induced prolongation of the M phase of the cell cycle. In addition, P4 increased the stability of the spindle microtubules, as assessed by the rate of beta-tubulin disassembly in response to cooling. Also, P4 increased spindle microtubule stability of SKOV-3 cells. This effect was mimicked by the depletion of PGRMC1 in these cells. Importantly, P4 did not increase the stability of the microtubules over that observed in PGRMC1-depleted SKOV-3 cells. Immunofluorescent analysis revealed that PGRMC1 is distributed to the spindle apparatus as well as to the centrosomes at metaphase. Further in situ proximity ligation assay revealed that PGRMC1 interacted with beta-tubulin. Taken together, these results suggest that P4 inhibits mitosis of ovarian cells by increasing the stability of the mitotic spindle. Moreover, P4's actions appear to be dependent on PGRMC1's function within the mitotic spindle.  相似文献   

6.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

7.
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.  相似文献   

8.
In the oocytes of many species, bipolar spindles form in the absence of centrosomes. Drosophila melanogaster oocyte chromosomes have a major role in nucleating microtubules, which precedes the bundling and assembly of these microtubules into a bipolar spindle. Here we present evidence that a region similar to the anaphase central spindle functions to organize acentrosomal spindles. Subito mutants are characterized by the formation of tripolar or monopolar spindles and nondisjunction of homologous chromosomes at meiosis I. Subito encodes a kinesinlike protein and associates with the meiotic central spindle, consistent with its classification in the Kinesin 6/MKLP1 family. This class of proteins is known to be required for cytokinesis, but our results suggest a new function in spindle formation. The meiotic central spindle appears during prometaphase and includes passenger complex proteins such as AurB and Incenp. Unlike mitotic cells, the passenger proteins do not associate with centromeres before anaphase. In the absence of Subito, central spindle formation is defective and AurB and Incenp fail to properly localize. We propose that Subito is required for establishing and/or maintaining the central spindle in Drosophila oocytes, and this substitutes for the role of centrosomes in organizing the bipolar spindle.  相似文献   

9.
Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover, colchicine treatment disrupts Asp localization to the centrosome, indicating that Asp is not an integral centrosomal protein. In both meiotic and mitotic divisions of asp mutants, microtubule nucleation occurs from the centrosome, and gamma-tubulin localizes correctly. However, spindle pole focusing and organization are severely affected. By examining cells that carry mutations both in asp and in asterless, a gene required for centrosome function, we have determined the role of Asp in the absence of centrosomes. Phenotypic analysis of these double mutants shows that Asp is required for the aggregation of microtubules into focused spindle poles, reinforcing the conclusion that its function at the spindle poles is independent of any putative role in microtubule nucleation. Our data also suggest that Asp has a role in the formation of the central spindle. The inability of asp mutants to correctly organize the central spindle leads to disruption of the contractile ring machinery and failure in cytokinesis.  相似文献   

10.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   

11.
The assembly of a functional mitotic spindle is crucial for achieving successful mitosis. Aurora A kinase is one of the key regulators of mitotic events, including mitotic entry, centrosome maturation and spindle bipolarity. Caenorhabditis elegans Aurora A (AIR-1) is responsible for the assembly of γ-tubulin-independent microtubules in early embryos; however, the mechanism by which AIR-1 contributes to microtubule assembly during mitosis has been unclear. Here we show by live-cell imaging and RNA-mediated interference (RNAi)-based modulation of gene activity that AIR-1 has a crucial role in the assembly of chromatin-stimulated microtubules that is independent of the γ-tubulin complex. Surprisingly, the kinase activity of AIR-1 is dispensable for this process. Although the kinase-inactive form of AIR-1 was detected along the microtubules as well as on centrosomes, the kinase-active form of AIR-1 was restricted to centrosomes. Thus, we propose that AIR-1 has a kinase-dependent role at centrosomes and a kinase-independent role for stabilizing spindle microtubules and that coordination of these two roles is crucial for the assembly of mitotic spindles.  相似文献   

12.
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.  相似文献   

13.
Formation of the bipolar mitotic spindle relies on a balance of forces acting on the spindle poles. The primary outward force is generated by the kinesin-related proteins of the BimC family that cross-link antiparallel interpolar microtubules and slide them past each other. Here, we provide evidence that Stu1p is also required for the production of this outward force in the yeast Saccharomyces cerevisiae. In the temperature-sensitive stu1-5 mutant, spindle pole separation is inhibited, and preanaphase spindles collapse, with their previously separated poles being drawn together. The temperature sensitivity of stu1-5 can be suppressed by doubling the dosage of Cin8p, a yeast BimC kinesin-related protein. Stu1p was observed to be a component of the mitotic spindle localizing to the midregion of anaphase spindles. It also binds to microtubules in vitro, and we have examined the nature of this interaction. We show that Stu1p interacts specifically with beta-tubulin and identify the domains required for this interaction on both Stu1p and beta-tubulin. Taken together, these findings suggest that Stu1p binds to interpolar microtubules of the mitotic spindle and plays an essential role in their ability to provide an outward force on the spindle poles.  相似文献   

14.
Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. gamma-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in gamma-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30 degrees C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant gamma-tubulin is like the wild-type protein. Prediction of gamma-tubulin structure indicates that non-alpha/beta-tubulin protein-protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the gamma-tubulin mutant and in multicopy for normal cell morphology at 30 degrees C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for gamma-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of gamma-tubulin that involves non-tubulin protein-protein interactions, presumably with a second motor, MAP, or MTOC component.  相似文献   

15.
Chromosome segregration and cell division requires the regulated assembly of the mitotic spindle apparatus. This mitotic spindle is composed of condensed chromosomes attached to a dynamic array of microtubules. The microtubule array is nucleated by centrosomes and organized by associated structural and motor proteins. Mechanical linkages between sister chromatids and microtubules are critical for spindle assembly and chromosome segregation. Defects in either chromosome or centrosome segregation can lead to aneuploidy and are correlated with cancer progression. In this review, we discuss current models of how centrosomes and chromosomes organize the spindle for their equal distribution to each daughter cell.  相似文献   

16.
The folding of alpha- and beta-tubulin requires three proteins: the heteromeric TCP-1-containing cytoplasmic chaperonin and two additional protein cofactors (A and B). We show that these cofactors participate in the folding process and do not merely trigger release, since in the presence of Mg-ATP alone, alpha- and beta-tubulin target proteins are discharged from cytoplasmic chaperonin in a nonnative form. Like the prokaryotic cochaperonin GroES, which interacts with the prototypical Escherichia coli chaperonin GroEL and regulates its ATPase activity, cofactor A modulates the ATPase activity of its cognate chaperonin. However, the sequence of cofactor A derived from a cloned cDNA defines a 13-kD polypeptide with no significant homology to other known proteins. Moreover, while GroES functions as a heptameric ring, cofactor A behaves as a dimer. Thus, cofactor A is a novel cochaperonin that is structurally unrelated to GroES.  相似文献   

17.
A griseofulvin-resistant Chinese hamster ovary (CHO) mutant (Grs-2) which has an altered beta-tubulin subunit as well as wild-type beta-tubulin is temperature-sensitive (ts) for growth at 40.5 degrees C. This growth defect appears to result from the formation of abnormal mitotic spindles at the non-permissive temperature (Abraham, I et al., J cell biol 97 (1983) 1055) [19]. Light microscopy of spindles isolated from mutant cells cultured at the permissive temperature showed a typical bipolar morphology, whereas spindles isolated at the non-permissive temperature were multipolar. In order to study the role of tubulin in spindle formation, we analyzed the tubulin composition of the multipolar spindles. Two-dimensional gels and immunoblotting analysis of one-dimensional electrophoretic gels stained with monoclonal anti-Chinese hamster brain beta-tubulin antibody revealed that both mutant and wild-type beta-tubulins were present in similar proportions in both bipolar spindles at 37 degrees C and multipolar spindles at 40.5 degrees C. The ratio between wild-type and mutant tubulin in spindles was also found to be the same as in the cytoplasmic microtubule network in interphase cells, providing evidence that the mutant beta-tubulin appeared to be incorporated in a similar manner into both interphase and mitotic microtubule structures. In vitro microtubule polymerization onto centrosomes prepared from mutant Grs-2 demonstrated that 80% of the sites for microtubule nucleation were without centrioles, suggesting fragmentation of pericentriolar material away from centrioles. This may be one of the causes of multipolar spindle formation in the mutant cells. These results, therefore, suggest that abnormal formation of spindles in mutant cells is due not to the presence of the mutant tubulin per se, but to the abnormal behavior of this mutant tubulin in the cellular environment during mitosis or abnormal interaction with other components in the spindle at 40.5 degrees C.  相似文献   

18.
A review of the role of the microtubule motor dynein and its cofactor dynactin in the formation of a radial system of microtubules in the interphase cells and of mitotic spindle. Deciphering of the structure, functions, and regulation of activity of dynein and dynactin promoted the understanding of mechanisms of cell and tissue morphogenesis, since it turned out that these cells help the cell in finding its center and organize microtubule-determined anisotropy of intracellular space. The structure of dynein and dynactin molecules has been considered, as well as possible pathways of regulation of the dynein activity and the role of dynein in transport of cell components along the microtubules. Attention has also been paid to the functions of dynein and dynactin not related directly to transport: their involvement in the formation of an interphase radial system of microtubules. This system can be formed by self-organization of microtubules and dynein-containing organelles or via organization of microtubules by the centrosome, whose functioning requires dynein. In addition, dynein and dynactin are responsible for cell polarization during its movement, as well as for the position of nucleus, centrosomes, and mitotic spindle in the cell.  相似文献   

19.
The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.  相似文献   

20.
A review of the role of the microtubule motor dynein and its cofactor dynactin in the formation of a radial system of microtubules in the interphase cells and of mitotic spindle. Deciphering of the structure, functions, and regulation of activity of dynein and dynactin promoted the understanding of mechanisms of cell and tissue morphogenesis, since it turned out that these cells help the cell in finding its center and organize microtubule-determined anisotropy of intracellular space. The structure of dynein and dynactin molecules has been considered, as well as possible pathways of regulation of the dynein activity and the role of dynein in transport of cell components along the microtubules. Attention has also been paid to the functions of dynein and dynactin not related directly to transport: their involvement in the formation of an interphase radial system of microtubules. This system can be formed by self-organization of microtubules and dynein-containing organelles or via organization of microtubules by the centrosome, whose functioning requires dynein. In addition, dynein and dynactin are responsible for cell polarization during its movement, as well as for the position of nucleus, centrosomes, and mitotic spindle in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号