首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Torrent J  Connelly JP  Coll MG  Ribó M  Lange R  Vilanova M 《Biochemistry》1999,38(48):15952-15961
To investigate the characteristics of the postulated carboxy terminal chain-folding initiation site in bovine pancreatic ribonuclease A (RNase A) (residues 106-118), important in the early stages of the folding pathway, we have engineered by site-directed mutagenesis a set of 14 predominantly conservative hydrophobic variants of the protein. The stability of each variant has been compared by pressure and temperature-induced unfolding, monitored by fourth derivative UV absorbance spectroscopy. Apparently simple two-state, reversible unfolding transitions are observed, suggesting that the disruption of tertiary structure of each protein at high pressure or temperature is strongly cooperative. Within the limits of the technique, we are unable to detect significant differences between the two processes of denaturation. Both steady-state kinetic parameters for the enzyme reaction and UV CD spectra of each RNase A variant indicate that truncation of hydrophobic side chains in this region has, in general, little or no effect on the native structure and function of the enzyme. Furthermore, the decreases in free energy of unfolding upon pressure and thermal denaturation of all the variants, particularly those modified at residues 106 and 108, suggest that the hydrophobic residues and side chain packing interactions of this region play an important role in maintaining the conformational stability of RNase A. We also demonstrate the potential of Tyr115 replacement by Trp as a non-destabilizing fluorescence probe of conformational changes local to the region.  相似文献   

2.
J M Beals  E Haas  S Krausz  H A Scheraga 《Biochemistry》1991,30(31):7680-7692
Conformational properties of the OT-16 peptide, the C-terminal 20 amino acids of RNase A, were examined by nonradiative energy transfer. A modified OT-16 peptide was prepared by solid-phase synthesis with the inclusion of diaminobutyric acid (DABA) at the C-terminus. The OT-16-DABA peptide was labeled with a fluorescent 1,5-dimethylaminonaphthalene sulfonyl (dansyl, DNS) acceptor at the N-terminal amine and a fluorescent naphthoxyacetic acid (NAA) donor at the gamma-amine of the DABA located at the C-terminus of the peptide by using an orthogonal protection scheme. Energy transfer was monitored in DNS-OT-16-DABA-NAA by using both fluorescence intensity (sensitized emission) and lifetime (donor quenching) experiments. The lifetime data indicate that the peptide system is a dynamic, flexible one. A detailed analysis, based on a dynamic model that includes a skewed Gaussian function to model the equilibrium distribution of interprobe distances and a mutual diffusion coefficient between the two probes to model conformational dynamics in the peptide [Beechem & Haas (1989) Biophys. J. 55, 1225.], identified the existence of a partially ordered structure (relatively narrow distribution of interprobe distances) at temperatures greater than or equal to 20 degrees C in the absence of denaturant. The width and the position of the average of the distributions decrease with increasing temperature, in this range; this suggests that the structure is stabilized by hydrophobic interactions. In addition, the peptide undergoes cold denaturation at around 1.5 degrees C as indicated by broadening of the distance distribution. The addition of 6 M guanidine hydrochloride (Gdn-HCl) also broadens the distance distribution significantly, presumably by eliminating the hydrophobic interactions and unfolding the peptide. The results of the analysis of the distance distribution demonstrate that (1) nonradiative energy transfer can be used to study the conformational dynamics of peptides on the nanosecond time scale, (2) a partially ordered structure of OT-16-DABA exists in solution under typical refolding conditions, and (3) structural constraints (presumably hydrophobic interactions) necessary for the formation of a chain-folding initiation site in RNase A are also present in the OT-16-DABA peptide in the absence of denaturant and are disrupted by Gdn-HCl.  相似文献   

3.
The effects of proline and X-Pro peptide bond conformations on the fluorescence properties of tyrosine in peptides corresponding to parts of a proposed chain-folding initiation site in bovine pancreatic ribonuclease A are examined by time-resolved and steady-state fluorescence spectroscopy. In peptides with Tyr-Pro sequences, the conformational constraints of proline on a preceding residue result in significant fluorescence quenching for both trans and cis peptide bond conformations. Small peptides containing Pro-Tyr sequences, on the other hand, do not exhibit fluorescence quenching compared to Ac-Tyr-NHMe. Studies of fluorescence decay in the tryptic fragment of performic acid oxidized ribonuclease corresponding to residues 105-124 (i.e., O-T-16) demonstrate the presence of at least two environments of the single tyrosine chromophore (in the sequence Asn113-Pro114-Tyr115). In these two (ensemble-averaged) environments, tyrosine has shorter and longer lifetimes, respectively, than in Ac-Tyr-NHMe. The fluorescence heterogeneity in O-T-16 does not correlate with X-Pro cis/trans conformational heterogeneity that can be detected by nuclear magnetic resonance (NMR) spectroscopy. Instead, the fluorescence heterogeneity in O-T-16 arises from the presence of multiple conformations with the same X-Pro peptide bond conformations which interconvert rapidly on the 1H NMR time scale (tau much less than 1 ms) but are distinguishable on the fluorescence lifetime time scale (tau greater than or equal to 1 ns). From comparisons with the tyrosine fluorescence decay of smaller synthetic peptides, it is concluded that the long-lifetime tyrosine fluorescence component of O-T-16 arises from interactions involving residues outside the Asn113-Pro114-Tyr115-Val116-Pro117 sequence, which either stabilize particular local conformations in the vicinity of Tyr115 or act directly to protect Tyr115 from efficient fluorescence quenching. The short-lifetime component of O-T-16 is also observed for the pentapeptide Ac-Asn-Pro-Tyr-Val-Pro-NHMe. The data provide evidence for a nonrandom polypeptide conformation of O-T-16 under conditions of solvent pH and temperature at which the complete disulfide-intact ribonuclease molecule is fully folded. Implications of this work for the interpretation of fluorescence-detected unfolding experiments are discussed.  相似文献   

4.
To clarify the specific role of Phe120 in bovine pancreatic ribonuclease A (RNase A), changes in the thermal stability and activity of F120L, F120A, F120G, and F120W were analyzed with respect to some thermodynamic terms, i.e., Gibbs free energy, enthalpy, and entropy. The structural destabilization of F120L, F120A, and F120G was due to a decrease in DeltaH(m) with a parallel decrease in amino-acid volume at position 120, while the destabilization of F120W can be ascribed to an increase in DeltaS(m) accompanying an increase in DeltaH(m), showing that the size of Phe120 produces an optimum balance of conformational enthalpy and entropy for achieving the maximal structural stability. Moreover, the replacement of Phe120 affects activity. The increase in K(m) showed that the hydrophobicity and pi electron of Phe120 are important factors in substrate binding. The decrease in k(cat) was predicted to be due to positional changes of the side chains of His12 and/or His119. The positional changes were successfully detected by the rate of carboxymethylation by iodoacetate or bromoacetate, which correlated very well with decreases in activity, supporting the view that Phe120 also plays an important role in determining the position of His12 and/or His119 in order to achieve efficient catalysis.  相似文献   

5.
In the K/BxN mouse model of arthritis, autoantibodies against glucose-6-phosphate isomerase cause joint-specific inflammation and destruction. We have shown using micro-positron emission tomography that these glucose-6-phosphate isomerase-specific autoantibodies rapidly localize to distal joints of mice. In this study we used micro-positron emission tomography to delineate the stages involved in the development of arthritis. Localization of Abs to the joints depended upon mast cells, neutrophils, and FcRs, but not on C5. Surprisingly, anti-type II collagen Abs alone did not accumulate in the distal joints, but could be induced to do so by coinjection of irrelevant preformed immune complexes. Control Abs localized to the joint in a similar manner. Thus, immune complexes are essential initiators of arthritis by sequential activation of neutrophils and mast cells to allow Abs access to the joints, where they must bind a target Ag to initiate inflammation. Our findings support a four-stage model for the development of arthritis and identify checkpoints where the disease is reversible.  相似文献   

6.
Yang M  Yordanov B  Levy Y  Brüschweiler R  Huo S 《Biochemistry》2006,45(39):11992-12002
Human transthyretin (TTR) is an amyloidogenic protein whose aggregation is associated with several types of amyloid diseases. The following mechanism of TTR amyloid formation has been proposed. TTR tetramer at first dissociates into native monomers, which is the rate-limiting step in fibril formation. The monomeric species then partially unfold to form amyloidogenic intermediates that subsequently undergo a downhill self-assembly process. The amyloid deposit can be facilitated by disease-associated point mutations. However, only subtle structural differences were observed between the crystal structures of the wild type and the disease-associated variants. To investigate how single-point mutations influence the effective energy landscapes of TTR monomers, molecular dynamics (MD) simulations were performed on wild-type TTR and two pathogenic variants. Principal coordinate analysis on MD-generated ensembles has revealed multiple unfolding pathways for each protein. Amyloidogenic intermediates with the dislocated C strand-loop-D strand motif were observed only on the unfolding pathways of V30M and L55P variants and not for wild-type TTR. Our study suggests that the sequence-dependent unfolding pathway plays a crucial role in the amyloidogenicity of TTR. Analyses of side chain concerted motions indicate that pathogenic mutations on "edge strands" disrupt the delicate side chain correlated motions, which in turn may alter the sequence of unfolding events.  相似文献   

7.
Juneja J  Udgaonkar JB 《Biochemistry》2002,41(8):2641-2654
The unfolding of ribonuclease A was studied in 5.2 M guanidine hydrochloride at pH 8 and 10 degrees C using multiple optical probes, native-state hydrogen exchange (HX), and pulse labeling by hydrogen exchange. First, native-state HX studies were used to demonstrate that the protein exists in two slowly interconverting forms under equilibrium native conditions: a predominant exchange-incompetent N form and an alternative ensemble of conformations, N(I), in which some amide hydrogens are fully exposed to exchange. Pulsed HX studies indicated that, during unfolding, the rates of exposure to exchange with solvent protons were similar for all backbone NH probe protons. It is shown that two parallel routes of unfolding are available to the predominant N conformation as soon as it encounters strong unfolding conditions. A fraction of molecules appears to rapidly form N(I) on one route. On the other route an exchange-incompetent intermediate state ensemble, I(U)(2), is formed. The kinetics of unfolding measured by far-UV circular dichroism (CD) were faster than those measured by near-UV CD and intrinsic tyrosine fluorescence of the protein. The logarithms of the rate constants of the unfolding reaction measured by all three optical probes also showed a nonlinear dependence on GdnHCl concentration. All of the data suggest that N(I) and I(U)(2) are nativelike in their secondary and tertiary structures. While N(I) unfolds directly to the fully exchange-competent unfolded state (U), I(U)(2) forms another intermediate I(U)(3) which then unfolds to U. I(U)(3) is devoid of all native alpha-helical secondary structure and has only 30% of the tertiary interactions still intact. Since the rates of global unfolding measured by near-UV CD and fluorescence agree well with the rates of exposure determined for all of the backbone NH probe protons, it appears that the rate-limiting step for the unfolding of RNase A is the dissolution of the entire native tertiary structure and penetration of water into the hydrophobic core.  相似文献   

8.
FTIR spectroscopy was used to characterize and compare the temperature- and pressure-induced unfolding of ribonuclease A and a set of its variants engineered in a hydrophobic region of the C-terminal part of the molecule postulated as a CFIS. The results show for all the ribonucleases investigated, a cooperative, two-state, reversible unfolding transition using both pressure and temperature. The relative stabilities, among the different sites and different variants at the same site, monitored either through the changes in the position of the maximum of the amide I' band and the tyrosine band, or the maximum of the band assigned to the beta-sheet structure, corroborate the results of a previous study using fourth-derivative UV absorbance spectroscopy. In addition, variants at position 108 are the most critical for ribonuclease structure and stability. The V108G variant seems to present a greater conformational flexibility than the other variants. The pressure- and temperature-denaturated states of all the ribonucleases characterized retained some secondary structure. However, their spectral maxima were centered at different wavenumbers, which suggests that pressure- and temperature-denaturated states do not have the same structural characteristics. Nevertheless, there was close correlation between the pressure and temperature midpoint transition values for the whole series of protein variants, which indicated a common tendency of stability toward pressure and heat.  相似文献   

9.
The Phe114Pro mutation to the cupredoxin azurin (AZ) leads to a number of structural changes at the active site attributed to deletion of one of the hydrogen bonds to the Cys112 ligand, removal of the bulky phenyl group from the hydrophobic patch of the protein, and steric interactions made by the introduced Pro. The remaining hydrogen bond between the coordinating thiolate and the backbone amide of Asn47 is strengthened. At the type-1 copper site, the Cu(II)-O(Gly45) axial interaction decreases, while the metal moves out of the plane formed by the equatorial His46, Cys112, and His117 ligands, shortening the bond to the axially coordinating Met121. The resulting distorted tetrahedral geometry is distinct from the trigonal bipyramidal arrangement in the wild-type (WT) protein. The unique position of the main S(Cys) --> Cu(II) ligand-to-metal charge-transfer transition in AZ (628 nm) has shifted in the Phe114Pro variant to a value that is more typical for cupredoxins (599 nm). This probably occurs because of the removal of the Phe114-Cys112 hydrogen bond. The Phe114Pro mutation results in a 90 mV decrease in the reduction potential of AZ, and removal of the second hydrogen bond to the Cys ligand seems to be the major cause of this change. The C-terminal His117 ligand does not protonate in the reduced Phe114Pro AZ variant, which suggests that none of the structural features altered by the mutation are responsible for the absence of this effect in the WT protein. Upon reduction, the copper displaces further from the equatorial ligand plane and the Cu-S(Met121) bond length decreases. These changes are larger than those seen in the WT protein and contribute to the order of magnitude decrease in the intrinsic electron-transfer capabilities of the Phe114Pro variant.  相似文献   

10.
Large increases in the strength of the hydrophobic effect and, consequently, in the estimates of the hydrophobic contribution to the thermodynamics of protein folding (and other biologically-relevant processes), have been recently advocated on the basis of the application, to model transfer thermodynamic data, of corrections for the solute/solvent size disparity. In this work we first examine the effect of molecular-size corrections on the values calculated from several types of model transfer data. For the transfer of a solute from an organic solvent to water, the above increase is exclusively associated with the application of a solute/water molecular-size correction. Secondly, we critically review and assess the several theoretical arguments that lead to these corrections. In particular, we show that, contrary to previous claims in the literature, the analysis of dissolution processes in terms of ideal-gas, intermediate states does not lead to the molecular-size correction term, but only to expressions equivalent (although not strictly identical) to those derived from the well-known Ben-Naim's statistical-mechanical approach. In general, the several analyses offered or discussed in this work disfavor the application of the solute/water molecular-size corrections.  相似文献   

11.
Residues Phe300 and Phe309 of tyrosine hydroxylase are located in the active site in the recently described three-dimensional structure of the enzyme, where they have been proposed to play roles in substrate binding. Also based on the structure, Phe300 has been reported to be hydroxylated due to a naturally occurring posttranslational modification [Goodwill, K. E., Sabatier, C., and Stevens, R. C. (1998) Biochemistry 37, 13437-13445]. Mutants of tyrosine hydroxylase with alanine substituted for Phe300 or Phe309 have now been purified and characterized. The F309A protein possesses 40% less activity than wild-type tyrosine hydroxylase in the production of DOPA, but full activity in the production of dihydropterin. The F300A protein shows a 2.5-fold decrease in activity in the production of both DOPA and dihydropterin. The K(6-MPH4) value for F300A tyrosine hydroxylase is twice the wild-type value. These results are consistent with Phe309 having a role in maintaining the integrity of the active site, while Phe300 contributes less than 1 kcal/mol to binding tetrahydropterin. Characterization of Phe300 by MALDI-TOF mass spectrometry and amino acid sequencing showed that hydroxylation only occurs in the isolated catalytic domain after incubation with a large excess of 7, 8-dihydropterin, DTT, and Fe(2+). The modification is not observed in the untreated catalytic domain or in the full-length protein, even in the presence of excess iron. These results establish that hydroxylation of Phe300 is an artifact of the crystallography conditions and is not relevant to catalysis.  相似文献   

12.
Herberhold H  Winter R 《Biochemistry》2002,41(7):2396-2401
Temperature- and pressure-induced denaturation of the protein ubiquitin was investigated using FT-IR spectroscopy. On the basis of IR spectral parameters, different states are distinguished and a pressure/temperature-stability diagram of the protein has been determined. The evolution of the secondary structures with temperature illustrates that the band intensities of disordered structures decrease at the expense of the formation of intermolecular beta-sheets at 83 degrees C, pD 7, and ambient pressure, with the population of intramolecular beta-sheets and alpha-helices remaining essentially unchanged. At ambient temperature (T = 21 degrees C) and pD 7, ubiquitin denatures at 5.4 kbar. Contrary to other proteins studied so far, features of secondary structure of ubiquitin remain distinct at high pressure, suggesting that part of this small protein rearranges and does not unfold to disordered structures. The secondary structural changes during compression and decompression are fully reversible, and no aggregation occurs. With corresponding measurements of the pressure-induced denaturation of ubiquitin at different temperatures, a p/T-stability diagram of ubiquitin could be obtained. Furthermore, kinetic FT-IR measurements were carried out using the pressure-jump relaxation technique. The denaturation process is shown to occur on a time scale which is about twice as long as that of the renaturation process, and both processes are much slower than the unfolding-refolding kinetics observed at ambient pressure.  相似文献   

13.
The RNase H activity of HIV-RT is coordinated by a catalytic triad (E478, D443, D498) of acidic residues that bind divalent cations. We examined the effect of RNase H deficient E(478)-->Q and D(549)-->N mutations that do not alter polymerase activity on binding of enzyme to various nucleic acid substrates. Binding of the mutant and wild-type enzymes to various nucleic acid substrates was examined by determining dissociation rate constants (k(off)) by titrating both Mg(2+) and salt concentrations. In agreement with the unaltered polymerase activity of the mutant, the k(off) values for the wild-type and mutant enzymes were essentially identical using DNA-DNA templates in the presence of 6 mM Mg(2+). However, with lower concentrations of Mg(2+) and in the absence of Mg(2+), although both enzymes dissociated more rapidly, the mutant enzymes dissociated several-fold more slowly than the wild type. This was also observed on RNA-DNA templates. These results indicate that alterations in residues essential for Mg(2+) binding have a pronounced positive effect on enzyme-template stability and that the negative residues in the RNase H region of the enzyme have a negative influence on binding in the absence of Mg(2+). In this regard RT is similar to other nucleic acid cleaving enzymes that show enhanced binding upon mutation of active site residues.  相似文献   

14.
Aghera N  Earanna N  Udgaonkar JB 《Biochemistry》2011,50(13):2434-2444
To improve our understanding of the contributions of different stabilizing interactions to protein stability, including that of residual structure in the unfolded state, the small sweet protein monellin has been studied in both its two variant forms, the naturally occurring double-chain variant (dcMN) and the artificially created single-chain variant (scMN). Equilibrium guanidine hydrochloride-induced unfolding studies at pH 7 show that the standard free energy of unfolding, ΔG°(U), of dcMN to unfolded chains A and B and its dependence on guanidine hydrochloride (GdnHCl) concentration are both independent of protein concentration, while the midpoint of unfolding has an exponential dependence on protein concentration. Hence, the unfolding of dcMN like that of scMN can be described as two-state unfolding. The free energy of dissociation, ΔG°(d), of the two free chains, A and B, from dcMN, as measured by equilibrium binding studies, is significantly lower than ΔG°(U), apparently because of the presence of residual structure in free chain B. The value of ΔG°(U), at the standard concentration of 1 M, is found to be ~5.5 kcal mol(-1) higher for dcMN than for scMN in the range from pH 4 to 9, over which unfolding appears to be two-state. Hence, dcMN appears to be more stable than scMN. It seems that unfolded scMN is stabilized by residual structure that is absent in unfolded dcMN and/or that native scMN is destabilized by strain that is relieved in native dcMN. The value of ΔG°(U) for both protein variants decreases with an increase in pH from 4 to 9, apparently because of the thermodynamic coupling of unfolding to the protonation of a buried carboxylate side chain whose pK(a) shifts from 4.5 in the unfolded state to 9 in the native state. Finally, it is shown that although the thermodynamic stabilities of dcMN and scMN are very different, their kinetic stabilities with respect to unfolding in GdnHCl are very similar.  相似文献   

15.
In order to increase understanding of the basis of the stability of the native conformational state of porcine pepsin A, a strategy based on induction and monitoring of protein denaturation was developed. Structural perturbation was achieved by adding acetonitrile (MeCN) to the protein-solvent system. MeCN was found to induce non-coincident disruption of the secondary and tertiary structural features of pepsin A. It is proposed that gross unfolding is prompted by disruption of the protein hydration pattern induced by the organic co-solvent. It should be noted that the functional properties and thermal stability of the protein were already impaired before the onset of global unfolding. Low and intermediate contents of MeCN in the protein-solvent system affected the sharpness of the thermal transition and the degree of residual structure of the heat-denatured state. The importance of hydration to the conformational stability of pepsin A in its biologically active state is discussed.  相似文献   

16.
The tailspike protein from the bacteriophage P22 is a well characterized model system for folding and assembly of multimeric proteins. Folding intermediates from both the in vivo and in vitro pathways have been identified, and both the initial folding steps and the protrimer-to-trimer transition have been well studied. In contrast, there has been little experimental evidence to describe the assembly of the protrimer. Previous results indicated that the C terminus plays a critical role in the overall stability of the P22 tailspike protein. Here, we present evidence that the C terminus is also the critical assembly point for trimer assembly. Three truncations of the full-length tailspike protein, TSPΔN, TSPΔC, and TSPΔNC, were generated and tested for their ability to form mixed trimer species. TSPΔN forms mixed trimers with full-length P22 tailspike, but TSPΔC and TSPΔNC are incapable of forming similar mixed trimer species. In addition, mutations in the hydrophobic core of the C terminus were unable to form trimer in vivo. Finally, the hydrophobic-binding dye ANS inhibits the formation of trimer by inhibiting progression through the folding pathway. Taken together, these results suggest that hydrophobic interactions between C-terminal regions of P22 tailspike monomers play a critical role in the assembly of the P22 tailspike trimer.  相似文献   

17.
The dog GnRH receptor was cloned to facilitate the identification and characterization of selective nonpeptide GnRH antagonists. The dog receptor is 92% identical to the human GnRH receptor. Despite such high conservation, the quinolone-based nonpeptide GnRH antagonists were clearly differentiated by each receptor species. By contrast, peptide antagonist binding and functional activity were not differentiated by the two receptors. The basis of the differences was investigated by preparing chimeric receptors followed by site-directed mutagenesis. Remarkably, a single substitution of Phe313 to Leu313 in the dog receptor explained the major differences in binding affinities and functional activities. The single amino acid replacement of Phe313 of the human receptor with Leu313 resulted in a 160-fold decrease of binding affinity of the nonpeptide antagonist compound 1. Conversely, the replacement of Leu313 of the dog receptor with Phe313 resulted in a 360-fold increase of affinity for this compound. These results show that Phe313 of the GnRH receptor is critical for the binding of this structural class of GnRH antagonists and that the dog receptor can be "humanized" by substituting Leu for Phe. This study provides the first identification of a critical residue in the binding pocket occupied by nonpeptide GnRH antagonists and reinforces cautious extrapolation of ligand activity across highly conserved receptors.  相似文献   

18.
19.
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.  相似文献   

20.
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of -4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being >or=0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson-Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号