首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

2.
Pretreatment of rat brain membranes at pH 4.5 before assay at pH 7.4 modifies the function of GTP-binding proteins (G-proteins) by eliminating Gs-stimulated adenylate cyclase activity while increasing opiate-inhibited adenylate cyclase activity. To help characterize the molecular nature of the low pH effect, we labeled Gs and Gi alpha-subunits in both control and low pH-pretreated membranes with the GTP photoaffinity analog [32P]P3 (4-azidoanilido)-P1-5'-GTP ([32P]AAGTP). When membranes were preincubated with unlabeled AAGTP, a persistent inhibitory state of adenylate cyclase was produced, which was overcome in untreated membranes with high (greater than 1 microM) concentrations of guanylyl-5'-imidodiphosphate [Gpp(NH)p]. In low pH-pretreated membranes, this inhibition could not be overcome, and stimulation by Gpp(NH)p was eliminated. Maximal inhibition of adenylate cyclase achieved by incubation with AAGTP was not altered by low pH pretreatment. Incorporation of [32P]AAGTP into Gs (42 kilodaltons) or Gi/o (40 kilodaltons) was unaffected by low pH pretreatment; however, transfer of 32P from Gi/o to Gs, which occurs with low (10 nM) concentrations of Gpp(NH)p in untreated membranes, was severely retarded in low pH-pretreated membranes. Both the potency and efficacy of Gpp(NH)p in producing exchange of [32P]AAGTP from Gi/o to Gs were markedly reduced by low pH pretreatment. These results correlate the loss of Gs-stimulated adenylate cyclase with a loss of transfer of nucleotide from Gi/o to Gs alpha-subunits and suggest that the nucleotide exchange participates in the modulation of neuronal adenylate cyclase.  相似文献   

3.
A significant increase of guanylylimidodiphosphate (GppNHp)-, fluoride-, and forskolin-stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3-(4-azidoanilido)-P1-5'-GTP [( 32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs-mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.  相似文献   

4.
A membrane-bound protein cofactor (ARF) is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory regulatory component (Gs) of adenylate cyclase. Improved methods for the purification of ARF from bovine brain are described. ARF has a high-affinity binding site for guanine nucleotides. Binding of GTP or GTP gamma S to ARF is necessary for the activity of the cofactor; GDP X ARF does not support ADP-ribosylation of Gs. Although the protein as purified contains stoichiometric amounts of GDP, GTPase activity of isolated ARF was not detected. Cholera toxin-dependent activation of adenylate cyclase thus requires two guanine nucleotide binding proteins.  相似文献   

5.
Fluoride ion, presumably an Al3+-F- complex, has been proposed to activate the guanine nucleotide regulatory protein (G-protein) of the visual system, transducin, by associating with GDP at the nucleotide-binding site and thus mimicking the effects of non-hydrolysable GTP analogues [Bigay, Deterre, Pfister & Chabre (1985) FEBS Lett. 191, 181-85]. We have examined this proposed model by using the adenylate cyclase complexes of frog erythrocytes, S49 lymphoma cells and human platelets. Preincubation of plasma membranes from frog erythrocytes and S49 cells with 20 mM-fluoride for 20 min at 30 degrees C strongly stimulated adenylate cyclase activity. In contrast, the preactivated membranes were still able to bind beta-adrenergic agonist with high affinity, as determined by radioligand-binding techniques. Moreover, high-affinity agonist binding in fluoride-treated membranes was fully sensitive to guanine nucleotide, which decreased beta-adrenergic-receptor affinity for agonist. Very similar results were obtained for [3H]prostaglandin E1 binding to S49 membranes pretreated with fluoride. Incubation of human platelet membranes with increasing concentrations of fluoride (1-50 mM) resulted in biphasic regulation of adenylate cyclase activity, with inhibition observed at concentrations greater than 10 mM. Preincubation of platelet membranes with 20 mM-fluoride did not affect agonist high-affinity binding to alpha 2-adrenergic receptors, nor receptor regulation by guanine nucleotide. These results suggest that the model developed from the study of transducin may not be generally applicable to the G-proteins of the adenylate cyclase system.  相似文献   

6.
The putative guanine nucleotide binding (G)-protein involved in transduction of signals from the TCR/CD3 complex has not been identified. We have used a UV-photoaffinity labeling technique to covalently attach [alpha-32P]GTP to human lymphocyte and thymocyte membrane proteins. Ten bands specifically labeled with [32P]GTP were detected by SDS-PAGE and autoradiography in T lymphocyte membranes. Among these, a 40-kDa protein was identified by immunoblotting as the alpha-subunit of the adenylate cyclase-inhibiting G-protein, Gi, and two proteins of 44 and 46 kDa were identified as the alpha-subunits of adenylate cyclase stimulating G-protein (Gs). These proteins also served as substrates for ADP-ribosylation by pertussis toxin and cholera toxin, respectively. Comparison of GTP-labeled membrane proteins from immature and more mature thymocytes and blood T lymphocytes, revealed that bands of 26, 30, 34, 40, 44 and 46 kDa were absent or weakly labeled in immature thymocytes, intermediate in mature thymocytes, and strongest in blood T cells. Similar increases were seen in ADP ribosylation of the substrates for pertussis, cholera, and botulinum C3 toxin. However, corresponding quantitative changes in Gi and Gs were not detected by immunoblotting, which suggests that the increased labeling is caused by enhanced affinity of the proteins for GTP rather than by increased amount of protein during thymic maturation. A concomitant maturation of GTP-induced cAMP production was seen in the cell populations, but no such change occurred in direct activation of adenylate cyclase by forskolin. The changes in some (but not all) GTP-binding proteins during acquisition of immunocompetence indicates their importance in T lymphocyte physiology.  相似文献   

7.
The specific mechanism by which the inhibitory guanine nucleotide binding protein (Gi) mediates the inhibition of adenylate cyclase activity is still unclear. The subunit dissociation model, based on studies in purified or reconstituted systems, suggests that the beta gamma subunit, which is dissociated with activation of Gi, inhibits the function of the stimulatory guanine nucleotide binding protein (Gs) by reducing the concentration of the free alpha s subunit. In the present study, Gs protein function is determined by measuring cholera toxin-blockable, isoproterenol-induced increases in guanosine triphosphate (GTP) binding capacity to rat cardiac ventricle membrane preparations. Carbamylcholine totally inhibited this beta-adrenergic receptor-coupled Gs protein function. Pretreatment of the cardiac ventricle membrane with pertussis toxin prevented this muscarinic agonist effect. These results confirm the possibility of an inhibitory agonist-receptor coupled effect through Gi on Gs protein function proximal to the catalytic unit of adenylate cyclase in an intact membrane preparation.  相似文献   

8.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

9.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Little is known about the relative stoichiometry of guanine nucleotide-binding (G) proteins relative to the effector systems to which they link. We addressed this question for the stimulatory G protein (Gs) linked to adenylate cyclase. Forskolin stimulates the catalytic subunit of adenylate cyclase (C), but it has a higher efficacy and potency when C also interacts with the G protein Gs. Accordingly, we measured high-affinity [3H]forskolin binding to intact cells to assay alpha s-C complexes. No high-affinity specific binding occurred with unstimulated cells. The beta-adrenergic agonist isoproterenol promoted the binding of [3H]forskolin to about 3000 sites per cell, suggesting that each receptor on average activates at least several Gs molecules. Activating Gs directly with cholera toxin maximally promoted [3H]forskolin binding to a similar number of sites, suggesting that this is the maximal number of alpha s-C complexes formed per cell. We conclude that each cell likely contains only a few thousand functional copies of C, and that the availability of C (rather than Gs, which exists in more than 100,000 copies per cell) is likely to be limiting for agonist stimulation of adenylate cyclase activity.  相似文献   

11.
Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed 'exosomes' into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, Gs, and the inhibitory, Gi, regulatory components) and beta-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of Gs or Gi in the exosomes was detected by ADP ribosylation using [alpha-32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal Gs was almost as active as the membrane-derived Gs in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc- cells, which lack a functional Gs. The ability of exosomal Gs to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane Gs. The density of beta-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated beta-adrenergic receptors seem to be impaired in their ability to couple to and activate Gs. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the beta-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.  相似文献   

12.
Ethanol and guanine nucleotide binding proteins: a selective interaction   总被引:6,自引:0,他引:6  
Guanine nucleotide binding proteins (G proteins) play key roles in signal transduction, including the coupling of hormone and neurotransmitter receptors to adenylate cyclase, ion channels, and polyphosphoinositide metabolism. One member of this family of proteins, Gs, appears to represent a specific site of action of ethanol in the central nervous system. Ethanol is often perceived as a nonspecific drug, and its anesthetic effects may in fact arise from relatively nonspecific interactions with cell membrane lipids. However, recent investigations point to a selective effect of low concentrations of ethanol to promote the activation of Gs, and thus to enhance adenylate cyclase activity. Ethanol seems to have little or no effect on the function of other identified G proteins. After chronic ingestion of ethanol by animals, or chronic exposure of cells in culture to ethanol, the sensitivity of adenylate cyclase to stimulation by guanine nucleotides and agonists that act via Gs is decreased. The mechanism of this change may involve qualitative and/or quantitative alterations in Gs, and seems to vary in different cell types. Studies of human platelets and lymphocytes also reveal differences in adenylate cyclase activity between alcoholics and control subjects. The differences are consistent with involvement of Gs, and do not appear to reverse upon cessation of alcohol exposure. The results suggest that the platelet and/or lymphocyte adenylate cyclase system may provide a biochemical marker of genetic predisposition to alcoholism.  相似文献   

13.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

14.
Five GTP binding proteins in rat cerebral cortex synaptic membranes were identified by photoaffinity labelling with [3H] or [32P](P3-azido-anilido)-P1-5' GTP (AAGTP). When AAGTP-treated membranes were incubated with colchicine or vinblastine and subsequently washed, a single AAGTP-labelled protein of 42 kD was released into the supernatant. About 30% of the total labelled 42-kD protein was released into supernatants from membranes pretreated with colchicine or vinblastine compared with 15% released from control membranes. The amount of adenylate cyclase regulatory subunit (G unit) remaining in these membranes was assessed with reconstitution studies after inactivating the adenylate cyclase catalytic moiety with N-ethylmaleimide (NEM). Forty to fifty percent of functional G units were lost from membranes treated with colchicine prior to washing. This 40-50% loss of functional G unit after colchicine treatment corresponds to the previously observed 42% loss of NaF and guanylyl-5'-imidodiphosphate [Gpp(NH)p]-activated adenylate cyclase. Release of the AAGTP-labelled 42-kD protein from colchicine-treated synaptic membranes is double that from lumicolchicine-treated membranes. This colchicine-mediated release of 42-kD protein correlates with a doubling of functional G unit released from synaptic membranes after colchicine treatment. These findings suggest multiple populations of the G unit within the synaptic plasma membrane, some of which may interact with cytoskeletal components.  相似文献   

15.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

16.
Thyrotropin-releasing hormone (TRH), vasoactive intestinal polypeptide (VIP) and acetylcholine stimulated high affinity GTPase activity in GH3 cell membrane preparations. The effects of acetylcholine and VIP were blocked by pretreatment of cultured cells with pertussis toxin and cholera toxin respectively. Such pretreatment, which causes covalent modification of the guanine nucleotide-binding proteins (G-proteins) of adenylate cyclase, did not, however, block the effects of TRH on GTPase activity or phosphoinositide breakdown. These data suggest that TRH receptors interact with a G-protein discrete from those associated with regulation of adenylate cyclase activity.  相似文献   

17.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Adenylate cyclase activity and levels of guanine nucleotide regulatory proteins (G-proteins) were compared in platelets from normal and non-insulin-dependent diabetic (NIDDM) male subjects. Whilst no differences were noted in basal and NaF-stimulated adenylate cyclase activities the degree of stimulation achieved by both forskolin and prostaglandin, E1 was lower by some 34 and 52% respectively, in platelet membranes from diabetic subjects compared with those from normal control subjects. Altered alpha 1-adrenoceptor-mediated inhibition of prostaglandin E1-stimulated adenylate cyclase activity was evident; it being some 34% lower in platelet membranes from diabetic subjects compared to controls. Analysis of G-protein alpha-subunits, using specific anti-peptide antisera, showed that platelets from all subjects exhibited the Gi-2 and Gi-3, but not the Gi-1 forms of the inhibitory G-protein 'Gi' and all expressed the 42 kDa species of alpha-subunit of the stimulatory G-protein Gs. Whilst platelets of diabetic subjects had levels of Gs which were comparable to those found in control subjects their levels of Gi-2 and Gi-3 were some 49 and 75%, respectively, of those found in platelets from control subjects. It is suggested that changes in adenylate cyclase functioning and G-protein expression may contribute to altered platelet functioning in non-insulin-dependent diabetic subjects.  相似文献   

19.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

20.
Iodohydroxybenzylpindolol (I-HYP) is a chemically defined, high affinity, high specific activity beta-adrenergic antagonist that interacts with a single site on the turkey erythrocyte membrane. Study of the interaction of agonists, antagonists, and congeners with this site and concomitant alterations in adenylate cyclase activity have been carried out in the presence of high or low concentrations of guanine nucleotide. The results help clarify the relationship between binding and activation or inhibition of adenylate cyclase and the role of guanine nucleotides in modulating this interaction. There is a close correlation between binding constants (KD) for inhibitors determined by analysis of competitive displacement of 125I-HYP from receptor, and apparent affinities (Ki) for inhibition of adenylate cyclase. For activators, however, there is up to a 10-fold difference between KD and apparent affinity (KDapp) for adenylate cyclase activation at low guanine nucleotide concentration (10(-6) M guanylylimidodiphosphate). This difference is virtually abolished by employing higher nucleotide concentrations (10(-5) M guanylylimidodiphosphate) without significantly altering receptor affinity. This suggests that guanine nucleotides act by modulating receptor-enzyme interactions rather than hormone-receptor interactions. Moreover, several beta-adrenergic analogs previously shown to have no effect on adenylate cyclase in the absence of nucleotide, are partial agonists in the presence of 10(-5) M guanylylimidodiphosphate. Parallel analyses for a series of agonists and antagonists for adenylate cyclase activation and receptor interaction show affinities for levorotatory isomers generally 100-fold greater than for dextrorotatory isomers. Thus stereoconfiguration at the beta carbon clearly influences affinity of agonists or antagonists. Affinity is also importantly influenced by the nature of the aromatic ring as well as the N-alkyl group. The complexity of structure-function relationships for these compounds requires a redefinition of structural requirements for beta-adrenergic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号