首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To examine the relationship between macrophage tropism and neurovirulence, macaques were inoculated with two recombinant hybrid viruses derived from the parent viruses SIVmac239, a lymphocyte-tropic, non-neurovirulent clone, and SIV/17E-Br, a macrophage-tropic, neurovirulent virus strain. The first recombinant, SIV/17E-Cl, contained the portion of the env gene that encodes the surface glycoprotein and a short segment of the transmembrane glycoprotein of SIV/17E-Br in the backbone of SIVmac239. Unlike SIVmac239, SIV/17E-Cl replicated productively in macrophages, demonstrating that sequences in the surface portion of env determine macrophage tropism. None of five macaques inoculated with SIV/17E-Cl developed simian immunodeficiency virus (SIV) encephalitis. The second recombinant, SIV/17E-Fr, which contained the entire env and nef genes and the 3' long terminal repeat of SIV/17E-Br in the SIVmac239 backbone, was also macrophage tropic. Six of nine macaques inoculated with SIV/17E-Fr developed SIV encephalitis ranging from mild to moderate in severity, indicating a significant (P = 0.031) difference in the neurovirulence of the two recombinants. In both groups of macaques, CD4+ cell counts declined gradually during infection and there was no significant difference in the rate of the decline between the two groups of macaques. This study demonstrated that macrophage tropism alone is not sufficient for the development of neurological disease. In addition, it showed that while sequences in the surface portion of the envelope gene determine macrophage tropism, additional sequences derived from the transmembrane portion of envelope and/or nef confer neurovirulence.  相似文献   

2.
Simian immunodeficiency virus (SIV), a lymphocytopathic lentivirus, induces an AIDS-like disease in rhesus macaques (Macaca mulatta). A pathogenic molecular clone of rhesus macaque SIV (SIVmac), SIVmac-239, replicates and induces cytopathology in T lymphocytes but is restricted for replication in macrophages. In contrast, a nonpathogenic molecular clone of SIVmac, SIVmac-1A11, replicates and induces syncytia (multinucleated giant cells) in cultures of both T lymphocytes and macrophages. SIVmac-1A11 does not cause disease in macaques. To map the viral determinants of macrophage tropism, reciprocal recombinant genomes were constructed between molecular clones of SIVmac-239 and SIVmac-1A11. Infectious recombinant viruses were rescued by transfection of cloned viral genomes into permissive lymphoid cells. Analysis of one pair of reciprocal recombinants revealed that an internal 6.2-kb DNA fragment of SIVmac-1A11 was necessary and sufficient for both syncytium formation and efficient replication in macrophages. This region includes the coding sequences for a portion of the gag gene, all of the pol, vif, vpr, and vpx genes, the first coding exons of tat and rev, and the external env glycoprotein gp130. Thus, the transmembrane glycoprotein of env, the nef gene, the second coding exons of tat and rev, and the long terminal repeats are not essential for in vitro macrophage tropism. Analysis of additional recombinants revealed that syncytium formation, but not virus production, was controlled by a 1.4-kb viral DNA fragment in SIVmac-1A11 encoding only the external env glycoprotein gp130. Thus, gp130 env of SIVmac-1A11 is necessary for entry of virus into macrophages but is not sufficient for a complete viral replication cycle in this cell type. We therefore conclude that gp130 env and one or more genetic elements (exclusive of the long terminal repeats, transmembrane glycoprotein of env, and second coding exons of tat and rev, and nef) are essential for a complete replication cycle of SIVmac in rhesus macaque macrophages.  相似文献   

3.
The role of the simian immunodeficiency virus (SIV) nef gene in viral replication was investigated in several tissue culture systems. SIVmac1A11 is a molecularly cloned virus which replicates in both peripheral blood mononuclear cells (PBMC) and macrophages, although no disease is observed in infected rhesus macaques. In this report, we demonstrate that SIVmac1A11 contains a full open reading frame for nef which specifies a 37-kDa protein. To investigate the effects of nef on viral replication, a 70-bp deletion was introduced into the nef gene of SIVmac1A11. Analysis of infected cell extracts by immunoblotting revealed that both SIVmac1A11 and nef deletion virus SIVmac1A11 delta nef produced the same viral proteins, except that Nef was absent in the mutant virus. The deletion mutation did not affect viral replication in PBMC, in monocyte-derived and alveolar macrophages obtained from rhesus macaques, and in human cell lines HUT-78 and CEMx-174. In addition, SIVmac1A11 and SIVmac1A11 delta nef exhibited similar patterns of cytopathologic changes and ultrastructural appearances in infected cells. SIVmac1A11 and SIVmac1A11 delta nef did not infect human tumor macrophage cell line U937, GCT, THP-1, or HL-60 cells, although virus was produced after these cells were transfected with either wild-type or nef mutant viral DNA. Similar levels of virus were recovered from U937 and THP-1 cells transfected with mutant and parental proviral DNAs. In transient expression assays in a T-cell line and a macrophage line, the nef protein of SIVmac1A11 did not significantly suppress or enhance expression of the chloramphenicol acetyltransferase reporter gene linked to the SIVmac long terminal repeat. Thus, abrogation of nef did not affect several in vitro properties of SIVmac1A11, including patterns of viral infection in rhesus PBMC, rhesus macrophages, or human T-cell lines.  相似文献   

4.
5.
Most rhesus macaques infected with simian immunodeficiency virus SIVmac239 with nef deleted (either Delta nef or Delta nef Delta vpr Delta US [Delta 3]) control viral replication and do not progress to AIDS. Some monkeys, however, develop moderate viral load set points and progress to AIDS. When simian immunodeficiency viruses (SIVs) recovered from two such animals (one Delta nef and the other Delta 3) were serially passaged in rhesus monkeys, the SIVs derived from both lineages were found to consistently induce moderate viral loads and disease progression. Analysis of viral sequences in the serially passaged derivatives revealed interesting changes in three regions: (i) an unusually high number of predicted amino acid changes (12 to 14) in the cytoplasmic domain of gp41, most of which were in regions that are usually conserved; these changes were observed in both lineages; (ii) an extreme shortening of nef sequences in the region of overlap with U3; these changes were observed in both lineages; and (iii) duplication of the NF-kappa B binding site in one lineage only. Neither the polymorphic gp41 changes alone nor the U3 deletion alone appeared to be responsible for increased replicative capacity because recombinant SIVmac239 Delta nef, engineered to contain either of these changes, induced moderate viral loads in only one of six monkeys. However, five of six monkeys infected with recombinant SIVmac239 Delta nef containing both TM and U3 changes did develop persisting moderate viral loads. These genetic changes did not increase lymphoid cell-activating properties in the monkey interleukin-2-dependent T-cell line 221, but the gp41 changes did increase the fusogenic activity of the SIV envelope two- to threefold. These results delineate sequence changes in SIV that can compensate for the loss of the nef gene to partially restore replicative and pathogenic potential in rhesus monkeys.  相似文献   

6.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

7.
The pathogenesis of AIDS virus infection in a nonhuman primate AIDS model was studied by comparing plasma viral loads, CD4(+) T-cell subpopulations in peripheral blood mononuclear cells, and simian immunodeficiency virus (SIV) infection in lymph nodes for rhesus macaques infected with a pathogenic molecularly cloned SIVmac239 strain and those infected with its nef deletion mutant (Deltanef). In agreement with many reports, whereas SIVmac239 infection induced AIDS and depletion of memory CD4(+) T cells in 2 to 3 years postinfection (p.i.), Deltanef infection did not induce any manifestation associated with AIDS up to 6.5 years p.i. To explore the difference in SIV infection in lymphoid tissues, we biopsied lymph nodes at 2, 8, 72, and 82 weeks p.i. and analyzed them by pathological techniques. Maximal numbers of SIV-infected cells (SIV Gag(+), Env(+), and RNA(+)) were detected at 2 weeks p.i. in both the SIVmac239-infected animals and the Deltanef-infected animals. In the SIVmac239-infected animals, most of the infected cells were localized in the T-cell-rich paracortex, whereas in the Deltanef-infected animals, most were localized in B-cell-rich follicles and in the border region between the paracortex and the follicles. Analyses by double staining of CD68(+) macrophages and SIV Gag(+) cells and by double staining of CD3(+) T cells and SIV Env(+) cells revealed that SIV-infected cells were identified as CD4(+) T cells in either the SIVmac239 or the Deltanef infection. Whereas the many functions of Nef protein were reported from in vitro studies, our finding of SIVmac239 replication in the T-cell-rich paracortex in the lymph nodes supports the reported roles of Nef protein in T-cell activation and enhancement of viral infectivity. Furthermore, the abundance of SIVmac239 infection and the paucity of Deltanef infection in the T-cell-rich paracortex accounted for the differences in viral replication and pathogenicity between SIVmac239 and the Deltanef mutant. Thus, our in vivo study indicated that the nef gene enhances SIV replication by robust productive infection in memory CD4(+) T cells in the T-cell-rich region in lymphoid tissues.  相似文献   

8.
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.  相似文献   

9.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

10.
Clinical and in vitro studies have shown that activity of the autonomic nervous system (ANS) can stimulate lentivirus replication. To define the potential anatomical basis for this effect, we analyzed the spatial relationship between catecholaminergic neural fibers and sites of simian immunodeficiency virus (SIV) replication in lymph nodes from rhesus macaques experimentally infected with SIVmac251. Viral replication was mapped by in situ hybridization for SIV env, gag, and nef RNA, and catecholaminergic varicosities from the ANS were mapped by sucrose phosphate glyoxylic acid chemofluorescence. Spatial statistical analyses showed that the likelihood of active SIV replication increased by 3.9-fold in the vicinity of catecholaminergic varicosities (P < 0.0001). The densities of both ANS innervation and SIV replication differed across cortical, paracortical, and medullary regions of the lymph node, but analyses of each region separately continued to show increased replication of SIV adjacent to catecholaminergic varicosities. Ancillary analyses ruled out the possibility that SIV-induced alterations in lymph node architecture might create a spurious spatial association. These data support human clinical studies and in vitro molecular analyses showing that catecholamine neurotransmitters from the ANS can increase lentiviral replication by identifying a specific anatomic context for interactions between ANS neural fibers and replication of SIV in lymphoid tissue.  相似文献   

11.
Rhesus macaques immunized with simian immunodeficiency virus SIVmac239Deltanef but not protected from SIVmac251 challenge were studied to determine the genetic and biological characteristics of the breakthrough viruses. Assessment of SIV genetic diversity (env V1-V2) revealed a reduction in the number of viral species in the immunized, unprotected macaques, compared to the number in nonimmunized controls. However, no evidence for selection of a specific V1-V2 genotype was observed, and biologically cloned isolates from the animals with breakthrough virus were similar with respect to replication kinetics and coreceptor use in vitro.  相似文献   

12.
13.
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Δnef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Δnef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (105 to 107 RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Δnef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Δnef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.  相似文献   

14.
Experimental evidence from the simian immunodeficiency virus (SIV) model of AIDS has shown that the nef gene is critical in the pathogenesis of AIDS. Consequently, nef is of considerable interest in both antiviral drug and vaccine development. Preliminary findings in two rhesus macaques indicated that a deletion of only 12 bp found in the overlapping nef/3' long terminal repeat (LTR) region (9501 to 9512) of the SIVmacC8 molecular clone was associated with reduced virus isolation frequency. We show that this deletion can be repaired in vivo by a sequence duplication event and that sequence evolution continues until the predicted amino acid sequence of the repair is virtually indistinguishable from that of the virulent wild type. These changes occurred concomitantly with reversion to virulence, evidenced by a high virus isolation frequency and load, decline in anti-p27 antibody, substantial reduction in the CD4/CD8 ratio, and development of opportunistic infections associated with AIDS. These findings clearly illustrate the capacity for repair of small attenuating deletions in primate lentiviruses and also strongly suggest that the region from 9501 to 9512 in the SIV nef/3' LTR region is of biological relevance. In addition, the ability of attenuated virus to revert to virulence raises fundamental questions regarding the nature of superinfection immunity.  相似文献   

15.
The rate of disease development in simian immunodeficiency virus (SIV) infection of macaques varies considerably among individual macaques. While the majority of macaques inoculated with pathogenic SIV develop AIDS within a period of 1 to 2 years, a minority exhibit a rapid disease course characterized by absence or transience of humoral and cellular immune responses and high levels of virus replication with widespread dissemination of SIV in macrophages and multinucleated giant cells. The goal of this study was to examine viral evolution in three SIVsmE543-3-inoculated rapid progressors to determine the contribution of viral evolution to the development of rapid disease and the effect of the absence of immune pressure upon viral evolution. PCR was used to amplify and clone the entire SIV genome from tissues collected at necropsy, and the course of viral evolution was assessed by env sequences cloned from sequential plasma samples of one rapid progressor (RP) macaque. The majority of sequence changes in RP macaques occurred in the envelope gene. Substitutions were observed in all three animals at specific conserved residues in envelope, including loss of a glycosylation site in V1/V2, a D-to-N/V substitution in a highly conserved GDPE motif, and a P-to-V/H/T substitution in the V3 loop analog. A cell-cell fusion assay revealed that representative env clones utilized CCR5 as a coreceptor, independent of CD4. The selection of specific substitutions in envelope in RP macaques suggests novel selection pressures on virus in such animals and suggests that viral variants that evolve in these animals may play a role in disease progression.  相似文献   

16.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

17.
We have examined the frequency of infection of monocyte-derived and alveolar macrophages isolated from rhesus macaques inoculated with simian immunodeficiency virus (SIVmac) utilizing a semiquantitative PCR methodology. Animals were inoculated with either pathogenic (SIVmac239) or nonpathogenic (SIVmac1A11) molecularly cloned viruses of SIVmac, or with uncloned pathogenic SIVmacBIOL. The frequency of SIV DNA in macrophages was highest early after infection and at terminal stages of disease, whereas during the asymptomatic period, SIV DNA was present at very low levels in macrophages.  相似文献   

18.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

19.
To study the effect of interleukin-2 (IL-2) on simian immunodeficiency virus (SIV) replication, pathogenesis, and immunogenicity, we replaced the nef gene of SIVmac239 by the IL-2 coding region. The virus, designated SIV-IL2, stably expressed high levels of IL-2 in cell culture. In comparison to SIVmac239, SIV-IL2 replicated more efficiently in peripheral blood mononuclear cells in the absence of exogenously added IL-2. To determine whether this growth advantage would be of relevance in vivo, four juvenile rhesus monkeys were infected with SIV-IL2 and four monkeys were infected with a nef deletion mutant of SIV (SIVdeltaNU). After a peak in the cell-associated viral load 2 weeks postinfection, the viruses could barely be isolated 3 to 7 months postinfection. Mean capsid antigen levels were higher in the SIV-IL2 group than in the nef deletion group 2 weeks postinfection. Viruses reisolated from the SIV-IL2-infected animals expressed high levels of IL-2 during the acute phase of infection. Deletions in the IL-2 coding region of SIV-IL2 were observed in two of the SIV-IL2-infected macaques 3 months postinfection. Urinary neopterin levels, a marker for unspecific immune stimulation, were higher in the SIV-IL2-infected macaques than in SIVdeltaNU-infected animals during the acute phase of infection. The SIV-specific T-cell-proliferative response and antibody titers were similar in both groups. Cytotoxic T cells directed against viral antigens were detected in all SIV-IL2-infected macaques and in two of the SIVdeltaNU-infected animals. Expression of IL-2 did not seem to alter the attenuated phenotype of nef deletion mutants fundamentally, although there might have been a slight increase in virus replication and immune stimulation during the acute phase of infection. Deletion of the viral IL-2 gene 3 months postinfection could be a consequence of a selective disadvantage due to local coexpression of viral antigen and IL-2 in the presence of an antiviral immune response.  相似文献   

20.
Rhesus macaques infected with simian immunodeficiency virus (SIV) containing either a large nef deletion (SIVmac239Delta(152)nef) or interleukin-2 in place of nef developed high virus loads and progressed to simian AIDS. Viruses recovered from both juvenile and neonatal macaques with disease produced a novel truncated Nef protein, tNef. Viruses recovered from juvenile macaques infected with serially passaged virus expressing tNef exhibited a pathogenic phenotype. These findings demonstrated strong selective pressure to restore expression of a truncated Nef protein, and this reversion was linked to increased pathogenic potential in live attenuated SIV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号