首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ribothymidine (m5u) in tRNAs of M. lysodeikticus is not derived from methionine. The results indicate that as in tRNAs of B. subtilis a tetrahydrofolate derivative is involved in the formation of m5U, whereas methionine serves as precursor in the biosynthesis of m7G, m1A and m6A. Ribothymidine also occurs in 23S rRNA of B. subtilis and M. lysodeikticus. Approximately 2-3 moles of m5U residues were found per mole of 23S rRNA. In contrast to m5U residues present in tRNAs of B. subtilis and M. lysodeikticus, ribothymidine in 23S rRNA of these organisms and of E. coli is synthesized via S-adenosylmethionine. m6A and m1G, present in E. coli rRNAs, were not detected in rRNAs of (methyl-14C) methionine labeled B. subtilis and M. lysodeikticus.  相似文献   

4.
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.  相似文献   

5.
The nucleotide sequence of ribosomal 5.8 S RNA (also known as 7 S or 5.5 S rRNA) from Novikoff hepatoma ascites cells has been determined to be (see article). Estimations of the secondary structure based upon maximized base pairing and the fragments of partial ribonuclease digestion indicate that there may be five base-paired regions in the molecule, three forming a folding of the termini and two forming secondary hairpin loops. The sequence of Novikoff hepatoma 5.8 S rRNA is about 75% homologous with that of yeast 5.8 S rRNA (Rubin, G.M. (1973) J. Biol. Chem. 248, 3860-3875) and similar models for secondary structure are proposed. Both models contain a very stable G-C rich hairpin loop (residues 116 to 138), a less stable A-U-rich hairpin loop (residues 64 to 91) and two symmetrical bulges (residues 15 to 25 and 40 to 44).  相似文献   

6.
Ribosomal RNA guanine-(N2)-methyltransferases and their targets   总被引:3,自引:0,他引:3  
Five nearly universal methylated guanine-(N2) residues are present in bacterial rRNA in the ribosome. To date four out of five ribosomal RNA guanine-(N2)-methyltransferases are described. RsmC(YjjT) methylates G1207 of the 16S rRNA. RlmG(YgjO) and RlmL(YcbY) are responsible for the 23S rRNA m2G1835 and m2G2445 formation, correspondingly. RsmD(YhhF) is necessary for methylation of G966 residue of 16S rRNA. Structure of Escherichia coli RsmD(YhhF) methyltransferase and the structure of the Methanococcus jannaschii RsmC ortholog were determined. All ribosomal guanine-(N2)-methyltransferases have similar AdoMet-binding sites. In relation to the ribosomal substrate recognition, two enzymes that recognize assembled subunits are relatively small single domain proteins and two enzymes that recognize naked rRNA are larger proteins containing separate methyltransferase- and RNA-binding domains. The model for recognition of specific target nucleotide is proposed. The hypothetical role of the m2G residues in rRNA is discussed.  相似文献   

7.
Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain.  相似文献   

8.
9.
We have tested a putative base-paired interaction between the conserved GT psi C sequence of tRNA and the conserved GAAC47 sequence of 5 S ribosomal RNA by in vitro protein synthesis using ribosomes containing deletions in this region of 5 S rRNA. Ribosomes reconstituted with 5 S rRNA possessing a single break between residues 41 and 42, deletion of residues 42-46, or deletion of residues 42-52 were tested for their ability to translate phage MS2 RNA. Initiator tRNA binding, aminoacyl-tRNA binding, ppGpp synthesis, and miscoding were also tested. All of the measured functions could be carried out by ribosomes carrying the deleted 5 S rRNAs. The sizes and relative amounts of the polypeptides synthesized by MS2 RNA-programmed ribosomes were identical whether or not the 5 S RNA contained deletions. Aminoacyl-tRNA binding and miscoding were essentially unaffected. Significant reduction in ApUpG (but not poly(A,U,G) or MS2 RNA)-directed fMet-tRNA binding and ppGpp synthesis were observed, particularly in the case of the larger (residues 42-52) deletion. We conclude that if tRNA and 5 S rRNA interact in this fashion, it is not an obligatory step in protein synthesis.  相似文献   

10.
Structure of the ribosome-associated 5.8 S ribosomal RNA   总被引:3,自引:0,他引:3  
The structure of the 5.8 S ribosomal RNA in rat liver ribosomes was probed by comparing dimethyl sulfate-reactive sites in whole ribosomes, 60 S subunits, the 5.8 S-28 S rRNA complex and the free 5.8 S rRNA under conditions of salt and temperature that permit protein synthesis in vitro. Differences in reactive sites between the free and both the 28 S rRNA and 60 S subunit-associated 5.8 S rRNA show that significant conformational changes occur when the molecule interacts with its cognate 28 S rRNA and as the complex is further integrated into the ribosomal structure. These results indicate that, as previously suggested by phylogenetic comparisons of the secondary structure, only the "G + C-rich" stem may remain unaltered and a universal structure is probably present only in the whole ribosome or 60 S subunit. Further comparisons with the ribosome-associated molecule indicate that while the 5.8 S rRNA may be partly localized in the ribosomal interface, four cytidylic acid residues, C56, C100, C127 and C128, remain reactive even in whole ribosomes. In contrast, the cytidylic acid residues in the 5 S rRNA are not accessible in either the 60 S subunit or the intact ribosome. The nature of the structural rearrangements and potential sites of interaction with the 28 S rRNA and ribosomal proteins are discussed.  相似文献   

11.
The cytotoxin alpha-sarcin was employed to test the model of secondary and tertiary structures of plant 5S rRNAs, which we recently proposed [(1990) Int. J. Biol. Macromol. (in press)]. alpha-Sarcin is a novel ribonuclease that hydrolyzes phosphodiester bonds adjacent to purines in nucleic acids. The digestion pattern obtained for lupin and wheat germ 5S rRNAs strongly suggests the existence of tertiary interactions between residues C34, C35, C36, A37 and G85, G86, G87, U88 as previously proposed. The results on the secondary structure of plant 5S rRNA are in line with a previously proposed model.  相似文献   

12.
The spectrophotometric analysis of 45S precursor rRNA shows that it contains more G and C residues than does mature 28S or 18S rRNA. The helical content and the length of double-helical segments in 45S and 28S rRNA are similar.  相似文献   

13.
We have partially purified two 16S rRNA-specific methyltransferases, one of which forms m2G966 (m2G MT), while the other one makes m5C967 (m5C MT). The m2G MT uses unmethylated 30S subunits as a substrate, but not free unmethylated 16S rRNA, while the m5C MT functions reciprocally, using free rRNA but not 30S subunits (Nègre, D., Weitzmann, C. and Ofengand, J. (1990) UCLA Symposium: Nucleic Acid Methylation (Alan Liss, New York), pp. 1-17). We have now determined the basis for this unusual inverse specificity at adjacent nucleotides. Binding of ribosomal proteins S7, S9, and S19 to unmodified 16S rRNA individually and in all possible combinations showed that S7 plus S19 were sufficient to block methylation by the m5C MT, while simultaneously inducing methylation by the m2G MT. A purified complex containing stoichiometric amounts of proteins S7, S9, and S19 bound to 16S rRNA was isolated and shown to possess the same methylation properties as 30S subunits, that is, the ability to be methylated by the m2G MT but not by the m5C MT. Since binding of S19 requires prior binding of S7, which had no effect on methylation when bound alone, we attribute the switch in methylase specificity solely to the presence of RNA-bound S19. Single-omission reconstitution of 30S subunits deficient in S19 resulted in particles that could not be efficiently methylated by either enzyme. Thus while binding of S19 is both necessary and sufficient to convert 16S rRNA into a substrate of the m2G MT, binding of either S19 alone or some other protein or combination of proteins to the 16S rRNA can abolish activity of the m5C MT. Binding of S19 to 16S rRNA is known to cause local conformational changes in the 960-975 stem-loop structure surrounding the two methylated nucleotides (Powers, T., Changchien, L.-M., Craven, G. and Noller, H.F. (1988) J. Mol. Biol. 200, 309-319). Our results show that the two ribosomal RNA MTs studied in this work are exquisitely sensitive to this small but nevertheless functionally important structural change.  相似文献   

14.
The goal of the current study is to utilize molecular dynamic (MD) simulations to investigate the dynamic behavior of 16S rRNA in the presence and absence of S15 and to identify the binding interactions between these two molecules. The simulations show that: (i) 16S rRNA remains in a highly folded structure when it is bound to S15; (ii) in the absence of S15, 16S rRNA significantly alters its conformation and transiently forms conformations that are similar to the bound structure that make it available for binding with S15; (iii) the unbound rRNA spends the majority of its time in extended conformations. The formation of the extended conformations is a result of the molecule reaching a lower electrostatic energy and the formation of the highly folded, crystal-like conformation is a result of achieving a lower solvation energy. In addition, our MD simulations show that 16S rRNA and S15 bind across the major groove of helix 22 (H22) via electrostatic interactions. The negatively charged phosphate groups of G658, U740, G741 and G742 bind to the positively charged S15 residues Lys7, Arg34 and Arg37. The current study provides a dynamic view of the binding of 16S rRNA with S15.  相似文献   

15.
Primary and secondary structure of rat 28 S ribosomal RNA.   总被引:19,自引:9,他引:10       下载免费PDF全文
The primary structure of rat (Rattus norvegicus) 28 S rRNA is determined inferred from the sequence of cloned rDNA fragments. The rat 28 S rRNA contains 4802 nucleotides and has an estimated relative molecular mass (Mr, Na-salt) of 1.66 X 10(6). Several regions of high sequence homology with S. cerevisiae 25 S rRNA are present. These regions can be folded in characteristic base-paired structures homologous to those proposed for Saccharomyces and E. coli. The excess of about 1400 nucleotides in the rat 28 S rRNA (as compared to Saccharomyces 25 S rRNA) is accounted for mainly by the presence of eight distinct G+C-rich segments of different length inserted within the regions of high sequence homology. The G+C content of the four insertions, containing more than 200 nucleotides, is in the range of 78 to 85 percent. All G+C-rich segments appear to form strongly base-paired structures. The two largest G+C-rich segments (about 760 and 560 nucleotides, respectively) are located near the 5'-end and in the middle of the 28 S rRNA molecule. These two segments can be folded into long base-paired structures, corresponding to the ones observed previously by electron microscopy of partly denatured 28 S rRNA molecules.  相似文献   

16.
17.
The effects of amino acid replacements in the RNA-binding sites of homologous ribosomal proteins TL5 and L25 (members of the CTC family) on ability of these proteins to form stable complexes with ribosomal 5S RNA were studied. It was shown that even three simultaneous replacements of non-conserved amino acid residues by alanine in the RNA-binding site of TL5 did not result in noticeable decrease in stability of the TL5-5S rRNA complex. However, any replacement among five conserved residues in the RNA-binding site of TL5, as well as of L25 resulted in serious destabilization or complete impossibility of complex formation. These five residues form an RNA-recognition module in TL5 and L25. These residues are strictly conserved in proteins of the CTC family. However, there are several cases of natural replacements of these residues in TL5 and L25 homologs in Bacilli and Cyanobacteria, which are accompanied by certain changes in the CTC-binding site of 5S rRNAs of the corresponding organisms. CTC proteins and specific fragments of 5S rRNA of Enterococcus faecalis and Nostoc sp. were isolated, and their ability to form specific complexes was tested. It was found that these proteins formed specific complexes only with 5S rRNA of the same organism. This is an example of coevolution of the structures of two interacting macromolecules.  相似文献   

18.
19.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

20.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号