首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We examine the relationship between niche construction theory (NCT) and human behavioral ecology (HBE), two branches of evolutionary science that are important sources of theory in archeology. We distinguish between formal models of niche construction as an evolutionary process, and uses of niche construction to refer to a kind of human behavior. Formal models from NCT examine how environmental modification can change the selection pressures that organisms face. In contrast, formal models from HBE predict behavior assuming people behave adaptively in their local setting, and can be used to predict when and why people engage in niche construction. We emphasize that HBE as a field is much broader than foraging theory and can incorporate social and cultural influences on decision‐making. We demonstrate how these approaches can be formally incorporated in a multi‐inheritance framework for evolutionary research, and argue that archeologists can best contribute to evolutionary theory by building and testing models that flexibly incorporate HBE and NCT elements.  相似文献   

2.
Niche construction is the process whereby organisms modify selective environments, thereby affecting evolution. The niche‐construction perspective is particularly relevant to researchers using evolutionary methods to interpret human behavior and society. On the basis of niche‐construction theory, we argue against the hypothesis that modern humans experience an atypically large adaptive lag. We stress that humans construct their world largely to suit themselves and frequently buffer adaptive lag through cultural niche construction. Where they are unable to do that, natural selection of genes rapidly ensues. Our argument has implications for evolutionary psychology and human behavioral ecology, and suggests that the methods of the latter are potentially applicable to all human societies, even postindustrial ones.  相似文献   

3.
Niche construction refers to the activities of organisms that bring about changes in their environments, many of which are evolutionarily and ecologically consequential. Advocates of niche construction theory (NCT) believe that standard evolutionary theory fails to recognize the full importance of niche construction, and consequently propose a novel view of evolution, in which niche construction and its legacy over time (ecological inheritance) are described as evolutionary processes, equivalent in importance to natural selection. Here, we subject NCT to critical evaluation, in the form of a collaboration between one prominent advocate of NCT, and a team of skeptics. We discuss whether niche construction is an evolutionary process, whether NCT obscures or clarifies how natural selection leads to organismal adaptation, and whether niche construction and natural selection are of equivalent explanatory importance. We also consider whether the literature that promotes NCT overstates the significance of niche construction, whether it is internally coherent, and whether it accurately portrays standard evolutionary theory. Our disagreements reflect a wider dispute within evolutionary theory over whether the neo‐Darwinian synthesis is in need of reformulation, as well as different usages of some key terms (e.g., evolutionary process).  相似文献   

4.
Kylafis G  Loreau M 《Ecology letters》2008,11(10):1072-1081
Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.  相似文献   

5.
One of the greatest difficulties with evolutionary approaches in the study of stone tools (lithics) has been finding a mechanism for tying culture and biology in a way that preserves human agency and operates at scales that are visible in the archaeological record. The concept of niche construction, whereby organisms actively construct their environments and change the conditions for selection, could provide a solution to this problem. In this review, we evaluate the utility of niche construction theory (NCT) for stone tool archaeology. We apply NCT to lithics both as part of the “extended phenotype” and as residuals or precipitates of other niche‐constructing activities, suggesting ways in which archaeologists can employ niche construction feedbacks to generate testable hypotheses about stone tool use. Finally, we conclude that, as far as its applicability to lithic archaeology, NCT compares favorably to other prominent evolutionary approaches, such as human behavioral ecology and dual‐inheritance theory.  相似文献   

6.
Humans modify their environments in ways that significantly transform the earth's ecosystems. 1 - 3 Recent research suggests that such niche‐constructing behaviors are not passive human responses to environmental variation, but instead should be seen as active and intentional management of the environment. 4 - 10 Although such research is useful in highlighting the interactive dynamics between humans and their natural world, the niche‐construction framework, as currently applied, fails to explain why people would decide to modify their environments in the first place. 11 - 13 To help resolve this problem, we use a model of technological intensification 14 , 15 to analyze the cost‐benefit trade‐offs associated with niche construction as a form of patch investment. We use this model to assess the costs and benefits of three paradigmatic cases of intentional niche construction in Western North America: the application of fire in acorn groves, the manufacture of fishing weirs, and the adoption of maize agriculture. Intensification models predict that investing in patch modification (niche construction) only provides a net benefit when the amount of resources needed crosses a critical threshold that makes the initial investment worthwhile. From this, it follows that low‐cost investments, such as burning in oak groves, should be quite common, while more costly investments, such as maize agriculture, should be less common and depend on the alternatives available in the local environment. We examine how patterns of mobility, 16 risk management, 17 territoriality, 12 and private property 18 also co‐evolve with the costs and benefits of niche construction. This approach illustrates that explaining niche‐constructing behavior requires understanding the economic trade‐offs involved in patch investment. Integrating concepts from niche construction and technological intensification models within a behavioral ecological framework provides insights into the coevolution and active feedback between adaptive behaviors and environmental change across human history.  相似文献   

7.
The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world.  相似文献   

8.
行为偏侧是指动物进行某一行为时偏好使用某一侧肢体或感觉器官。行为偏侧作为脑偏侧所对应的可观测的行为指标,是动物行为适应性进化的代表性特征之一,它在个体水平上影响着个体适合度,在群体水平上是社会性物种的一种进化稳定策略,具有重要的生态和进化意义。中国非人灵长类资源丰富,而中国非人灵长类的行为偏侧研究起步较晚,始于二十世纪八十年代。本文系统归纳中国非人灵长类物种的行为偏侧研究进展,并基于当前研究现状,为今后发展提出积极建议。  相似文献   

9.
Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems.  相似文献   

10.
The latitudinal diversity gradient (LDG) is one of the most striking ecological patterns on our planet. Determining the evolutionary causes of this pattern remains a challenging task. To address this issue, previous LDG studies have usually relied on correlations between environmental variables and species richness, only considering evolutionary processes indirectly. Instead, we use a phylogenetically integrated approach to investigate the ecological and evolutionary processes responsible for the global LDG observed in swallowtail butterflies (Papilionidae). We find evidence for the 'diversification rate hypothesis' with different diversification rates between two similarly aged tropical and temperate clades. We conclude that the LDG is caused by (1) climatically driven changes in both clades based on evidence of responses to cooling and warming events, and (2) distinct biogeographical histories constrained by tropical niche conservatism and niche evolution. This multidisciplinary approach provides new findings that allow better understanding of the factors that shape LDGs.  相似文献   

11.
Gupta et al., in their article in this issue (‘Niche construction in evolutionary theory: the construction of an academic niche?’. doi: 10.1007/s12041-017-0787-6), lament ‘serious problems with the way science is being done’ and suggest that ‘niche construction theory exemplifies this state of affairs.’ However, their aggressively confrontational but superficial critique of niche construction theory (NCT) only contributes to these problems by attacking claims that NCT does not make. This is unfortunate, as their poor scholarship has done a disservice to the evolutionary biology community through propagating misinformation. We correct Gupta et al.’s misunderstandings, stressing that NCT does not suggest that the fact that organisms engage in niche construction is neglected, nor does it make strong claims on the basis of its formal theory. Moreover, the treatment of niche construction as an evolutionary process has been highly productive, and is both theoretically and empirically well-validated. We end by reflecting on the potentially deleterious implications of their publication for evolutionary science.  相似文献   

12.
Niche construction refers to the modification of selective environments by organisms. Theoretical and empirical studies of niche construction are increasing in importance as foci in evolutionary ecology. This special edition presents theoretical and empirical research that illustrates the significance of niche construction to the field. Here we set the scene for the following papers by (1) discussing the history of niche construction research, (2) providing clear definitions that distinguish niche construction from related concepts such as ecosystem engineering and the extended phenotype, (3) providing a brief summary of the findings of niche construction research, (4) discussing the contribution of niche construction and ecological inheritance to (a) expanded notions of inheritance, and (b) the extended evolutionary synthesis, and (5) briefly touching on some of the issues that underlie the controversies over niche construction.  相似文献   

13.
Niche conservatism theory suggests that recently diverged sister species share the same ecological niche. However, if the ecological niche evolves as part of the speciation process, the ecological pattern could be useful for recognizing cryptic species. In a broad sense systematists agree that the niche characters could be used for species differentiation. However, to date such characters have been ignored. We used the genetic algorithm for rule‐set production for modelling the ecological niche as a means of inferring ecological divergence in allopatric populations of muroid rodents for which taxonomic identity is uncertain. Our results show that niche differentiation is significant in most of the identified phylogroups. The differentiation is likely associated with natural evolutionary units, which can be identified by applying species concepts based on phylogenetic and ecological patterns (e.g. phylogenetic, cohesive, evolutionary). Even so, the role of the niche partition within phylogenetic reconstruction may be a limited one.  相似文献   

14.
The observed social systems of extant apes and humans suggest that the common ancestral state for Miocene hominoids was living in multimale–multifemale groups that exhibited a tendency to fission and fusion in response to ecological and/or social variables. The Hominoidea share a set of social commonalities, notably a social niche that extends beyond kin and beyond the immediate social group, as well as extensive intraspecific flexibility in social organization. We propose that an essential feature of hominoid evolution is the shift from limited plasticity in a generalized social ape to expanded behavioral plasticity as an adaptive niche. Whereas in most nonhominoid primates variability and flexibility take the shape of specific patterns of demographic flux and interindividual relationships, we can consider behavioral flexibility and plasticity as a means to an end in hominoid socioecological landscapes. In addition, the potential for innovation, spread, and inheritance of behavioral patterns and social traditions is much higher in the hominoids, especially the great apes, than in other anthropoid primates. We further suggest that this pattern forms a basis for the substantial expansion of social complexity and adaptive behavioral plasticity in the hominins, especially the genus Homo. Our objectives in this article are threefold: 1) summarize the variation in the social systems of extant hominoid taxa; 2) consider the evolutionary processes underlying these variations; and 3) expand upon the traditional socioecological model, especially with respect to reconstructions of early hominin social behavior. We emphasize a central role for both ecological and social niche construction, as well as behavioral plasticity, as basal hominoid characteristics. Over evolutionary time these characteristics influence the patterns of selection pressures and the resulting social structures. We propose that a mosaic of ecological and social inheritance patterns should be considered in the reconstruction of early hominin social systems.  相似文献   

15.
Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate‐based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by‐product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size‐divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype–environment associations that further support the case for ecological speciation in these lizards.  相似文献   

16.
17.
While niche construction theory and developmental approaches to evolution have brought to the front the active role of organisms as ecological and developmental agents, respectively, the role of agents in reproduction has been widely neglected by organismal perspectives of evolution. This paper addresses this problem by proposing an agential view of reproduction and shows that such a perspective has implications for the explanation of the origin of modes of reproduction, the evolvability of reproductive modes, and the coevolution between reproduction and social behavior. After introducing the two prevalent views of agency in evolutionary biology, namely those of organismal agency and selective agency, I contrast these two perspectives as applied to the evolution of animal reproduction. Taking eutherian pregnancy as a case study, I wonder whether organismal approaches to agency forged in the frame of niche construction and developmental plasticity theories can account for the goal-directed activities involved in reproductive processes. I conclude that the agential role of organisms in reproduction is irreducible to developmental and ecological agency, and that reproductive goals need to be included into our definitions of organismal agency. I then explore the evolutionary consequences of endorsing an agential approach to reproduction, showing how such an approach might illuminate our understanding of the evolutionary origination and developmental evolvability of reproductive modes. Finally, I analyze recent studies on the coevolution between viviparity and social behavior in vertebrates to suggest that an agential notion of reproduction can provide unforeseen links between developmental and ecological agency.  相似文献   

18.
A conceptual divide exists between ecological and evolutionary approaches to understanding adaptive radiation, although the phenomenon is inherently both ecological and evolutionary. This divide is evident in studies of phytophagous insects, a highly diverse group that has been frequently investigated with the implicit or explicit goal of understanding its diversity. Whereas ecological studies of phytophagous insects increasingly recognize the importance of tri‐trophic interactions as determinants of niche dimensions such as host‐plant associations, evolutionary studies typically neglect the third trophic level. Here we attempt to reconcile ecological and evolutionary approaches through the concept of the ecological niche. We specifically present a tri‐trophic niche concept as a foil to the traditional bi‐trophic niche concept for phytophagous insects. We argue that these niche concepts have different implications for understanding herbivore community structure, population divergence, and evolutionary diversification. To this end, we offer contrasting empirical predictions of bi‐ and tri‐trophic niche concepts for patterns of community structure, the process of population divergence, and patterns of evolutionary diversification of phytophagous insects.  相似文献   

19.
Phylogenetic methodologies for studying specialization   总被引:4,自引:0,他引:4  
D. Irschick  L. Dyer  T.W. Sherry 《Oikos》2005,110(2):404-408
Although the concept of specialization has played a central role in the development of ecological and evolutionary theory, important questions about specialization remain largely unanswered. We argue that the traditional division of specialization into evolutionary and ecological factors may be less useful than considering specialization as three components, which may not be mutually exclusive: ecological, behavioral, and functional. Many ecologists assume that these different aspects of specialization are necessarily correlated. However, this assumption has rarely been tested, but could be examined by using a phylogenetic approach. We argue that (1) ecologists should measure these different aspects of specialization within their respective organisms by placing measures of specialization on a standardized scale, and (2) should employ phylogenetic approaches for understanding how these components evolve. We argue that this approach will provide a more coordinated understanding of how specialization evolves.  相似文献   

20.
Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号