共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased Phosphorylation of Myelin Basic Protein During Hippocampal Long-Term Potentiation 总被引:3,自引:0,他引:3
Coleen M. Atkins Shu-Jen Chen Eric Klann J. David Sweatt 《Journal of neurochemistry》1997,68(5):1960-1967
Abstract: Hippocampal long-term potentiation (LTP) is a long-lasting and rapidly induced increase in synaptic strength. Previous experiments have determined that persistent activation of protein kinase C (PKC) contributes to the early maintenance phase of LTP (E-LTP). Using the back-phosphorylation method, we observed an increase in the phosphorylation of a 21-kDa PKC substrate, termed p21, 45 min after LTP was induced in the CA1 region of the hippocampus. p21 was found to have the same apparent molecular weight as the 18.5-kDa isoform of myelin basic protein (MBP) and was recognized by an antibody to MBP in western blotting and immunoprecipitation. Furthermore, p21 from control and potentiated hippocampal slices and purified MBP have identical phosphopeptide maps when back-phosphorylated and then digested with either endoproteinase Lys-C or endoproteinase Asp-N, suggesting that p21 and MBP are identical proteins. As there was no observed change in the amount of MBP in LTP, the increase in MBP phosphorylation during LTP cannot be explained by a change in the amount of protein. From these experiments, we conclude that the phosphorylation of the 18.5-kDa isoform of MBP is increased during E-LTP. 相似文献
2.
J. David Sweatt Coleen M. Atkins Joanne Johnson Joey D. English Erik D. Roberson †Shu-Jen Chen Alexandra Newton ‡Eric Klann 《Journal of neurochemistry》1998,71(3):1075-1085
Abstract: One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the α and βII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a “protected site” model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes. 相似文献
3.
A Protein Modulator Stimulates C Kinase-Dependent Phosphorylation of a 90K Substrate in Synaptic Membranes 总被引:5,自引:1,他引:4
We have identified and partially purified an acidic, heat-stable, noncalmodulin protein from bovine brain cytosol that stimulates Ca2+-dependent phosphorylation of an Mr 90K substrate in crude rat brain synaptic membranes. We show that this modulator of phosphorylation (MOP) enhances Ca2+- and phospholipid-dependent protein kinase (C kinase) phosphorylation of this 90K substrate. The 90K substrate is a higher Mr form of an 87K substrate that is a major C kinase substrate in rat brain. The Ca2+-dependent phosphorylation of both substrates is inhibited by the Ca2+-binding proteins S-100 and calmodulin. Both substrates yield phosphopeptide fragments of Mr 9K and 13K after limited proteolysis with V8 protease. Two-dimensional polyacrylamide gel electrophoresis reveals that they have similar acidic isoelectric points (pI 5.0). MOP enhances Ca2+-dependent phosphorylation of the 90K substrate whereas the phosphorylation of 87K is diminished. This reciprocal relationship suggests that the mobility of the 87K substrate in sodium dodecyl sulfate-polyacrylamide gels is decreased to 90K with increasing phosphorylation. MOP may be a novel protein modulator of C kinase-mediated phosphorylation in the nervous system. 相似文献
4.
Phosphorylation of Serine-880 in GluR2 by Protein Kinase C Prevents Its C
Terminus from Binding with Glutamate Receptor-Interacting Protein 总被引:10,自引:0,他引:10
Phosphorylation of the glutamate receptor is an important mechanism of synaptic plasticity. Here, we show that the C terminus of GluR2 of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor is phosphorylated by protein kinase C and that serine-880 is the major phosphorylation site. This phosphorylation also occurs in human embryonic kidney (HEK) cells by addition of 12-O-tetradecanoylphorbol 13-acetate. Our immunoprecipitation experiment revealed that the phosphorylation of serine-880 in GluR2 drastically reduced the affinity for glutamate receptor-interacting protein (GRIP), a synaptic PDZ domain-containing protein, in vitro and in HEK cells. This result suggests that modulation of serine-880 phosphorylation in GluR2 controls the clustering of AMPA receptors at excitatory synapses and consequently contributes to synaptic plasticity. 相似文献
5.
Prenatal Ethanol Exposure Decreases GAP-43 Phosphorylation and Protein Kinase C Activity in the Hippocampus of Adult Rat Offspring 总被引:3,自引:0,他引:3
Nora I. Perrone-Bizzozero Tove V. Isaacson Gregory M. O. Keidan Cheryl Eriqat Karina F. Meiri Daniel D. Savage Andrea M. Allan 《Journal of neurochemistry》1998,71(5):2104-2111
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32 P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation. 相似文献
6.
Protein Phosphorylation in Astrocytes Mediated by Protein Kinase C: Comparison with Phosphorylation by Cyclic AMP-Dependent Protein Kinase 总被引:4,自引:4,他引:0
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms. 相似文献
7.
Muscarinic acetylcholine receptors purified from porcine cerebrum were phosphorylated by protein kinase C purified from the same tissue. More than 1 mol of phosphate was incorporated per mole of receptor, with both serine and threonine residues being phosphorylated. Neither the degree nor the rate of the phosphorylation was affected by the presence or absence of acetylcholine. GTP-sensitive high-affinity binding with acetylcholine was observed for muscarinic receptors reconstituted with GTP-binding proteins (Gi or Go), irrespective of whether muscarinic receptors or the GTP-binding proteins had been phosphorylated by protein kinase C or not. This indicates that the interaction between purified muscarinic receptors and purified GTP-binding proteins in vitro is not affected by their phosphorylation. 相似文献
8.
David M. Byers Frederick B. St. C. Palmer Matthew W. Spence Harold W. Cook 《Journal of neurochemistry》1993,60(4):1414-1421
Abstract: An 80-kDa protein labeled with [3 H]myristic acid in C6 glioma and N1E-115 neuroblastoma cells has been identified as the myristoylated alanine-rich C kinase substrate (MARCKS protein) on the basis of its calmodulin-binding, acidic nature, heat stability, and immunochemical properties. When C6 cells preincubated with [3 H]myristate were treated with 200 n M 4β-12- O -tetradecanoylphorbol 13-acetate (β-TPA), labeled MARCKS was rapidly increased in the soluble digitonin fraction (maximal, fivefold at 10 min) with a concomitant decrease in the Triton X-100–soluble membrane fraction. However, phosphorylation of this protein was increased in the presence of β-TPA to a similar extent in both fractions (maximal, fourfold at 30 min). In contrast, β-TPA–stimulated phosphorylation of MARCKS in N1E-115 cells was confined to the membrane fraction only and no change in the distribution of the myristoylated protein was noted relative to α-TPA controls. These results indicate that although phosphorylation of MARCKS by protein kinase C occurs in both cell lines, it is not directly associated with translocation from membrane to cytosol, which occurs in C6 cells only. The cell-specific translocation of MARCKS appears to correlate with previously demonstrated differential effects of phorbol esters on stimulation of phosphatidylcholine turnover in these two cell lines. 相似文献
9.
The Metabotropic Glutamate Receptor mGluR5 Induces Calcium Oscillations in Cultured Astrocytes via Protein Kinase C Phosphorylation 总被引:3,自引:3,他引:3
Kiyoshi Nakahara Masamichi Okada Shigetada Nakanishi 《Journal of neurochemistry》1997,69(4):1467-1475
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+ ]i ) in cultured rat astrocytes. Single-cell [Ca2+ ]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+ ]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+ ]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+ ]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+ ]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+ ]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+ ]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines. 相似文献
10.
T. Yokozeki K. Homma S. Kuroda U. Kikkawa †S. Ohno ‡M. Takahashi ‡K. Imahori Y. Kanaho 《Journal of neurochemistry》1998,71(1):410-417
Abstract: Activation of phospholipase D (PLD) is involved in receptor-mediated signal transduction responses. Signaling from PLD to a downstream molecule(s) appears to be mediated by the PLD product phosphatidic acid (PA). A target molecule(s) of PA, however, has not yet been identified. The present study sought to define such a target molecule(s) of PA. In bovine brain cytosol, proteins with apparent molecular weights of 29,000 (p29) and 32,000 (p32) were prominently phosphorylated in the presence of PA, but not in its absence, indicating that there is a PA-regulated protein kinase (PARK) in bovine brain that phosphorylates p29 and p32. One of these substrates, p29, was purified to near homogeneity. Its partial amino acid sequence was determined and found to be identical to that of a known brain-specific 25-kDa protein (p25). The purified p29 was also readily recognized by and immunoprecipitated with an anti-p25 antibody. These results suggest that p29 is very similar to or identical with p25. Using the purified p29 as a substrate, PARK was purified to near homogeneity. The purified PARK had an apparent molecular weight of 80,000, was strongly recognized by an anti-protein kinase C (PKC)α antibody, and was activated by phosphatidylserine (PS) as well as PA. The PA- and PS-stimulated PARK activity was extremely augmented by the presence of 1 µM free Ca2+. In the presence of 1 mM EGTA, phorbol 12-myristate 13-acetate activated PARK synergistically with PA or PS. Similar results were obtained with the purified recombinant PKCα. From these results, it is suggested that the PARK activity purified might be attributed to PKCα. In p25-depleted bovine brain cytosol, which was prepared by treatment of bovine brain cytosol with the anti-p25 antibody, PA-dependent phosphorylation of p29, but not p32, was almost completely eliminated. When PKCα in bovine brain cytosol was depleted by its precipitation with the anti-PKCα antibody, neither p29 nor p32 in this PKCα-depleted cytosol was phosphorylated in the presence of PA. These results indicate that in bovine brain cytosol PA activates PKCα, which, in turn, phosphorylates p29, which may be identical with p25. 相似文献
11.
Abstract: The phosphorylation state of cp20, a low molecular weight membrane-associated GTP-binding protein, was previously shown to increase two- to threefold 24 h after associative conditioning. Here, cp20 is shown to be phosphorylated by protein kinase C (PKC) in vitro. Pronounced differences in activity were observed with the three major isoforms of PKC, whereas casein kinase, calcium/calmodulin-dependent protein kinase II, and cyclic AMP-dependent protein kinase produced no detectable phosphorylation of cp20. Phosphorylation of cp20 had no effect on its GTPase or GTP-binding activity but caused a translocation of cp20 from cytosol to the nuclei/mitochondrial particulate fraction. These results suggest that the increase in phosphorylation of cp20 after conditioning may be due to PKC. 相似文献
12.
Depolarization-Induced Phosphorylation of the Protein Kinase C Substrate B-50 (GAP-43) in Rat Cortical Synaptosomes 总被引:1,自引:6,他引:1
L. V. Dekker P. N. E. De Graan M. De Wit J. J. H. Hens W. H. Gispen 《Journal of neurochemistry》1990,54(5):1645-1652
We studied the molecular events underlying K(+)-induced phosphorylation of the neuron-specific protein kinase C substrate B-50. Rat cortical synaptosomes were prelabelled with 32P-labelled orthophosphate. B-50 phosphorylation was measured by an immunoprecipitation assay. In this system, various phorbol esters, as well as a synthetic diacylglycerol derivative, enhance B-50 phosphorylation. K+ depolarization induces a transient enhancement of B-50 phosphorylation, which is totally dependent on extracellular Ca2+. Also, the application of the Ca2+ ionophore A23187 induces B-50 phosphorylation, but the magnitude and kinetics of A23187-induced B-50 phosphorylation differ from those induced by depolarization. The protein kinase inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and staurosporine antagonize K(+)- as well as PDB-induced B-50 phosphorylation, whereas trifluoperazine and calmidazolium are ineffective under both conditions. We suggest that elevation of the intracellular Ca2+ level after depolarization is a trigger for activation of protein kinase C, which subsequently phosphorylates its substrate B-50. This sequence of events could be of importance for the mechanism of depolarization-induced transmitter release. 相似文献
13.
14.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Protein Kinase C and Its 80-Kilodalton Substrate Protein in Neuroblastoma Cell Neurite Outgrowth 总被引:7,自引:3,他引:7
A potential role of the protein kinase C (PKC) system in differentiation of human neuroblastoma cell line LA-N-5 was investigated. It was found that neurite outgrowth induced by 12-O-tetradecanoylphorbol 13-acetate (TPA, 81 nM) was associated with a down-regulation of PKC as determined independently by immunocytochemistry, immunoblot, and enzyme activity assay. Down-regulation of PKC in cells induced to differentiate by retinoic acid (1 microM) was less pronounced, whereas it was undetected in cells induced to differentiate by nerve growth factor (100 ng/ml). The in vitro phosphorylation of an 80-kilodalton protein present in control LA-N-5 cells or in cells treated with TPA, retinoic acid, or nerve growth factor for 1 day decreased to various extents at days 4 or 7 concomitant with neuritogenesis. Pretreatment of LA-N-5 cells with a high concentration (1 microM) of TPA to deplete cellular PKC rendered the cells unresponsive to the differentiating effect of the agents. It was observed that CHP-100 cells, another human neuroblastoma line shown to be resistant to differentiation induced by the agents, had a reduced PKC level and the amount of in vitro phosphorylation of the 80-kilodalton protein was greatly reduced in control cells and remained relatively unchanged when the cells were treated with the agents for up to 7 days. The present studies suggested that PKC and its 80-kilodalton substrate protein were likely involved in initiation and/or progression of LA-N-5 cell differentiation induced by TPA and that separate PKC-independent pathways might also be involved in the differentiating effect of retinoic acid or nerve growth factor. 相似文献
16.
Loes H. Schrama Pierre N. E. de Graan Henk Zwiers Willem Hendrik Gispen 《Journal of neurochemistry》1986,47(6):1843-1848
In the in vitro hippocampal slice preparation a short tetanus induces long-term potentiation (LTP) and an increase in the post hoc phosphorylation of a 52-kDa protein in synaptosomal plasma membranes (SPM) prepared from these slices. This 52-kDa SPM phosphoprotein closely resembles the predominant phosphoprotein in coated vesicles, pp50, with respect to the insensitivity of its phosphorylation to Ca2+/calmodulin and cyclic AMP. This resemblance prompted us to compare in rat brain the 52-kDa SPM protein with pp50 in isolated coated vesicles. Both proteins appear to be very similar on basis of the following criteria: relative molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, phospho-amino acid content, and isoelectric point. Since coated vesicles are thought to be involved in receptor-mediated endocytosis and membrane recycling, our data suggest that LTP-correlated changes in 52-kDa phosphorylation may reflect increased coated vesicle activity. 相似文献
17.
Paul T. Kelly Rick K. Yip Steven M. Shields Michael Hay 《Journal of neurochemistry》1985,45(5):1620-1634
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication. 相似文献
18.
Pentylenetetrazole-Induced Chemoshock Affects Protein Kinase C and Substrate Proteins in Mouse Brain
Ching-Chow Chen 《Journal of neurochemistry》1994,62(6):2308-2315
Abstract: Protein kinase C (PKC) activity, western blot analysis of PKCα, β, γ, ε, and ζ by isozyme-specific antibodies, and in vitro phosphorylation of endogenous substrate proteins were studied in the mice brain after pentyl-enetetrazole-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified by DE-52 columns eluted with buffer A containing 100 or 200 m M KCI. This method consistently separates cytosolic and membrane proteins and various PKC isoforms. The 100 m M KCI eluates from DE-52 columns contain more PKC α and β in both cytosol and membrane than the 200 m M KCI eluates, whereas PKCγ, ε, and ζappear in equal amounts in these two eluates. The kinase activity assayed by phosphorylation of exogenous histone was increased in the chemoshocked mice in both the cytosol and membrane of 200 m M KCI eluates. In further analysis by immunoblotting, this increased activity was found to be due to the increase in content of PKC7 isozyme. As for novel-type ε and ζ isozymes, they were not altered in the chemoshocked mice. From autoradiography, the endogenous substrate 17-kDa neurogranin, which was shown below 21 kDa, was mostly eluted by 100 m M KCI from the DE-52 column, whereas 43-kDa neuromodulin, which was also demonstrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, only appeared in the 200 m M KCI eluates. The in vitro phosphorylation of neuromodulin was found to be increased in the chemoshocked mice. Therefore, the increased phosphorylation of neuromodulin and increased content of the PKCγ isoform were involved in the pentylenetetrazole-induced chemoshock. 相似文献
19.
P. N. E. De Graan L. V. Dekker A. B. Oestreicher L. Van der Voorn W. H. Gispen 《Journal of neurochemistry》1989,52(1):17-23
To determine changes in the degree of phosphorylation of the protein kinase C substrate B-50 in vivo, a quantitative immunoprecipitation assay for B-50 (GAP43, F1, pp46) was developed. B-50 was phosphorylated in intact hippocampal slices with 32Pi or in synaptosomal plasma membranes with [gamma-32P]ATP. Phosphorylated B-50 was immunoprecipitated from slice homogenates or synaptosomal plasma membranes using polyclonal anti-B-50 antiserum. Proteins in the immunoprecipitate were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the incorporation of 32P into B-50 was quantified by densitometric scanning of the autoradiogram. Only a single 48-kilodalton phosphoband was detectable in the immunoprecipitate, but this band was absent when preimmune serum was used. The B-50 immunoprecipitation assay was quantitative under the following condition chosen, as (1) recovery of purified 32P-labelled B-50 added to slice homogenates or synaptosomal plasma membranes was greater than 95%; and (2) modulation of B-50 phosphorylation in synaptosomal plasma membranes with adrenocorticotrophic hormone, polymyxin B, or purified protein kinase C in the presence of phorbol diester resulted in EC50 values identical to those obtained without immunoprecipitation. With this immunoprecipitation assay we found that treatment of hippocampal slices with 4 beta-phorbol 12,13-dibutyrate stimulated B-50 phosphorylation, whereas 4 alpha-phorbol 12,13-didecanoate was inactive. Thus, we conclude that the B-50 immunoprecipitation assay is suitable to monitor changes in B-50 phosphorylation in intact neuronal tissue. 相似文献
20.
Anne P. Barrie David G. Nicholls Jose Sanchez-Prieto Talvinder S. Sihra 《Journal of neurochemistry》1991,57(4):1398-1404
The mechanism by which protein kinase C (PKC) activates transmitter release from guinea pig cerebrocortical synaptosomes was investigated by employing parallel fluorescent assays of glutamate release, cytoplasmic free Ca2+, and plasma membrane potential. 4 beta-Phorbol dibutyrate (4 beta-PDBu) enhances the Ca(2+)-dependent, 4-aminopyridine (4AP)-evoked release of glutamate from synaptosomes, the 4AP-evoked elevation of cytoplasmic free Ca2+, and the 4AP-evoked depolarization of the plasma membrane. 4 beta-PDBu itself causes a slow depolarization, which may underlie the small effect of 4 beta-PDBu on spontaneous, KCl-evoked, and Ca(2+)-independent/4AP-evoked glutamate release. Because 4AP (but not KCl) generates spontaneous, tetrodotoxin-sensitive action potentials in synaptosomes, a major locus of presynaptic PKC action is to enhance these action potentials, perhaps by inhibiting delayed rectifier K+ channels. 相似文献